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ABSTRACT

An analysis and computational procedure has been developed
for predicting the natural vibration modes and frequencies of rotor blade
and hub systems, This method is capable of treating rotor systems
which are ot a general configuration and of including configuration
variables which are normally neglected,

An experimental apparatus and a testing technique have been
developed for obtaining the experimental data necessary to verify the
analytical procedure, This apparatus and the technique are capable of
deternuning the natural vibration modes and frequencies of two-bladed
rotor systems of L very general configuration while operating in the
absence of aerodynamic loads. An initial test program with the appara-
tus was conducted to determine the adequacy of the equipment, The

tests not only demonstrated the capability of the equipment and test
procedure but also revealed a problem with extrinsic excitation of the
test rotor at frequencies other than the shaking frequency, Recom-
mendations are made for modifications to the system and the techniques

in order to reduce the levels of these extraneous excitations and to
minimize their effects,

The computed and measured spanwise moment distributions
and the corresponding natural frequencies are presented for six of the
natural vibration modes of the test rotor at several rotational speeds,
The theoretical and experimental results are compared, and their
differences are discussed,

The model rotor used in these initial tests was intended to be
so simple as to be representable by the classical uniform uncoupled
beam, Because the theory for this classical configuration is well
established, the differences between the measured and computed results
were to be assigned to the experiment. However, the results of the
tests indicate that the test rotor couid not be adequately represented by
the classical unmiform uncoupled beam, especially in the higher frequency
natural vibration modes.
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INTRODUCTION

The structural dynamic characteristics of helicopter rotors
have a significant influence on the vibratory loadings experienced by the
rotor, the control system, the fuselage, and fuselage contents. Thus,the
ability of the designer to predict adequately these dynamic characteristics
is essential for minimization of the vibratory loads experienced by the
aircraft and its components,

The many configuration variables and physical parameters of
the blade and rotor system apparently provide the designer with a great
latitude to the layout of a new rotor for satisfying the various perform-
ance and struclural integrity requirements, In practice, however, the
uncertainties involved in the predictions of the aerodynamic loads and
structural characteristics encourage an extremely conservative approach
in which maximum use is made of features which have previously proved
to be satisfactory to the particular manufacturer,

Extremely conservative practices with regard to rotor design
have been justified on the grounds that changes to the geometry or elastic
characteristics of the rotor would change the aerodynamic forces in an
unpredictable way, Consequently, radical departures from established
successful rotor systems have been avoided, A fair amount of evidence
suggests that this judgment has been correct. Recent developments in
the aerodynamic theory of rotor blades and the beginning of an under-
standing of tip effects suggest that aerodynamic forces are now
sufficiently predictable to encourage a more precise approach to blade
layout, There is a corresponding need, however, for the establishment
of a validated structural dynamics theory that will permit the combining
of the new developments in aerodynamics with reliable structural and
stability analyses to arrive at rotor designs that satisfy a number of
simultaneously imposed constraints, The effort reported herein is the
first phase of a program initiated to develop and validate a reliable
method for predicting the structural dynamics of rotor systems.

At the preseut time, blade articulation is largely a matter of
individual company practice, and the particular methods of attachment
and hinge arrangement have evolved from cut- and-try procedures., The
distribution of structural material reflects stress-level estimates, and
the resulting blade designs tend to have some variations in the mass and
elastic characteristics which are generally ignored in current vibration
analyses, For example, the use of bonded doubler skins, particularly in
the vicinity of the blade root, can introduce shifts in the elastic-axis
location, Also, point forces, such as those introduced through a pitch-
control horn, usually are neglected in the estimation of rotor and blade
dynamic characteristics, Finally, there are virtually no quantitative
data which would permit the evaluation of structural dynamic analysis
methods of rotor and blades under the ideal condition assumed in their
development--that is, in the absence of all aerodynamic loads.




One purpose of this effort, then, was to develop an analytical
prucedure for predicting the natural vibration modes and frequencies of
representative helicopter rotor systems (operating in the absence of
aerodynamic loads) ot general configuration. The other purpose of this
effort was to develop an eaxperimental apparatus and a test techniq e for
obtaining data to verify the analytical method.

The analvtical procedure which has becn developed is a
generalization of the associated matrix analysis technique (reported,
for example, in References 1 and 2), The theoretical effort was largely
devoted to the derivation of expressions for the inertia loadings and
elastic restoring mwments (used to define the elements of the mass and
elastic matrices) for a rotor and blade of a very general configuration.
The analytical procedure includes the effects of the following rotor
parameters:

1. Nonuniform mass and torsional inertia distributions.

2, Nonuniform flapwise, edgewise, and torsional stiffness
distributions.

3. Built-in twist,

4, Mean bent shape.

5. Noncoincident and nonstraight cross-section c, g.,
centroid, and elastic axes which do not pass through
the rotor axis of rotation,

6. Details of articulation including:

a. Root fixities,
b. Radial and chordwise hinge offsets,
c¢. Hinge inclinations,

d. Pitch-horn location (point forces).

e. Pitch-axis offset and inclination.

The experimental effort was largely devoted to the design,
fabrication, and installation in a vacuum tank of a rotating shaker
system and rotor drive and support system, The inilial cxperimental
investigation reported herein was intended primarily to establish the
adequacy of the apparatus, This was to be accomplished by measuring
the natural vibration modes and frequencies of a model rotor system
intended tu be simple enough to be adequately represented by the classi-
cal umform uncoupled beam. Because the theory for the dynamic
response of this classical configuration is sufficiently well established,
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any differences between the measured and computed results could pre-
sumably be assigned to the experiment. The results of these tests and
comparisons with the simple theory are presented and discussed.
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THEORETICAL DEVELOPMENT

INTRODUCTION

It 1s the purpose of this analysis to develop a method for pre-
dicting the natural vibration modes and frequencies (in the absence of
aerodynamic loads) of rotor blades which are of a general configuration,
The analysis will allow for the combined elastic and rigid body motions
of the blades, arbitrary offsets of the root hinges, and noncoincidence
of the blade twist axis, elastic axis, and centroidal axis. Furthermore,
these three axes need not be straight and need not pass through the
center of rotation. The elastic description of the blade includes flapwise
bending, chordwise bending and blade torsion, while the rigid body
degrees of freedom are flapping, lead-lag, and rigid body pitching.

The basic nomenclature used in the analysis are defined in the
list of symbols,

The second section is concerned with the elastic behavior of a
twisted blade,and formulas are developed for the elastic restoring
moments as functions of blade deformations. Expressions are also given
for the deflection of a mass point in the blade relative to a blade refer-
ence axis system which rotates with the blade. The treatment of the
elastic behavior of the blade has been based, to a large extent, on con-
cepts developed by Houbolt and Brooks (Reference 3) in considering a
simpler blade representation without rigid body degrees of freedom. In
particular, the axial stresses due to centrifugal forces are treated as if
the blade acted as a collection of longitudinal fibers.

Expressions for the inertia forces acting on the blade are
required in the procedure developed for finding the blade dynamic
motions and natural frequencies. These are obtained by finding the
acceleration of a differential mass in the blade, multiplying by the mass
to determine the inertia force, and then carrying out the appropriate
integrations.

The problem of determining inertia forces is complicated
because of the generality of the configuration which has been allowed and
the need for determining absolute accelerations relative to an inertial
frame. The derivation of the blade inertial loadings is somewhat lengthy
but is carried out by a series of straightforward steps. Successive sec-
tions treat: (1) the motion of coordinate systems by a series of
transformations, (2) the derivation of the absolute acceleration of a mass
point of the blade from the accelerations relative to moving coordinates,
and (3) the integration of the blade inertial forces to obtain blade inertial
loadings per unit span referred to the blade reference axis system.
Finally, the inertial loading is transformed to moments about the local
elastic axis and the major and minor axes of the blade section, Equa-
tions are then derived for the total force and moment components acting

. on a section of the blade.




The analysis has been simplified by dropping terms in the
course of the development which would lead to nonlinear terms in the
oscillatory variables in the final equations. It has also been assumed
that the mean values of the nondimensional structural deformations and
the mean flapping, lead-lag and pitching angles are all small quantities,
so that their squares and products can be neglected when they occur in
the coefficients of the oscillatory variables. '

General differential equations for studying the vibrations of a
nonuniform, twisted, rotating helicopter blade including elastic and rigid
body motions could be obtained by combining the expressions for the blade
elastic behavior and the expressions for the blade inertial loadings and
acting bending and torsional moments. Such a development would be
analogous to the one used in Reference 3. However, the resulting
differential equations would be so complicated (even though linearized)
that some type of approximate method would be required to solve for
the vibration characteristics of the blade.

A different type of procedure was developed in the present
investigation for determining natural frequencies which is an extension
of Targoff's associated matrix technique (References 1 and 2 ). In this
procedure the blade is represented by a number of spanwise segments or
bays, and the inertial loadings on each bay are assumed to be concen-
trated and to act at the center of the bay. Each bay is then divided into
two parts--one outboard and one inboard of the concentrated mass. The
half bays are treated as if weightless, with the concentrated mass being
located at the junction between them. The elastic properties are assumed
to be constant within the outboard and inboard halves of the bay (but not
necessarily the same on each). The built-in blade twist is incorporated
in the model by permitting angle changes at the junction between bays.

The variables in the vibration problem iriclude the forces and
moments acting at the ends of each bay; the elastic deformations at the
ends of the bays; and the flapping, lead-lag, and pitching angles. The
variations of these quantities along the span are related by matrices.
Expressions for the elements of these matrices are derived in successive
sections of this chapter by application of the results for the elastic
behavior of the blade and the blade loadings obtained in preceding
sections. The transformation matrix gives the changes in the variables
at 2 section where there is an abrupt change in built-in twist, Elastic
matrices for the inner and outer parts cf a bay give the changes in the
variables across the inner and outer sections of the bays respectively,
Finally, a section is devoted to the mass matrix which gives the changes
in the variables from a position just outboard to a position just inboard of
a concentrated weight at the middie oi a bay.

Relationships can be obtained between the variables at the tip
and at the root of the blade by multiplying the matrices for all the blade
segments together. In the final section of the chapter a discussion is
given of how a solution for the vibration characteristics of the blade can
be obtained from these relationships and the application of appropriate
boundary conditions,

5
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FLASTIC BEHAVIOR OF A TWISTED BLADE

In this section, the elastic restoring moment components of a
¢ ross section ot a twisted blade are expressed in terms of duformations.
Lhe development 1s made tollowing the principles of engineering beam
theory ~inular to the one given by Houbolt and Brooks in Reference 3 ,
Ihe blade ettective cross section may change gradually along the span
bt as assamed synunetsic about the chord, The axis of built-in twist
(.2 2 ), the elastic venter (o, ) and the centroid are all on the chord., In
the treatiment ot the elastic behavior, the present analysis differs from
the analysis ot Houbolt and Brooks principally 1n that the axis of built-in
twist and the elastic anis ot the undeforimed blade are not assumed to be
cornaident ancd abianed with the 2 ands,  Due to the built-in twist, the blade
angle 4 varies with 2 and the distances ey, ey. e, and e, shown on
Fiaure 1 may also change gradually along the span.

'?I‘OY"I

~
‘}sl j—— // (n=e.+7)
\, -~ P LEADING
¥ - hd EDGE
P
P d
s~ _- |4
,-’
\ a.t_
7 CENTROID
0 Y
i~ o
ey THE 2 -AXIS 1S THE BLADE

REFERENCE AX1S.

Figure 1. DIAGRAM DEFINIRG BLADE STRUCTURAL AXES
AND POINTS IN BLADE SECTION.

The ¢« 3 reterence aves for the blade are fixed relative to the
slacd root,  Equat.ons are first obtained for the displacement of a general
pueint Ln the ~lade relative to these axes assuming that plane sections
recacn olane as the nlade detlects. The longitudinal fiber strains and
corresponding stresses at any point 1 a cross section can then be derived
tron (ne eguations tor the displacements, and finally, expressions can be
ootaLiec ter the contribution ot these stresses to the internal elastic

. et
nmaontieliv s,
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Before the occurrence of any deformation, let there be a point
in a blade section at z =z, with the coordinates y = ¢ and 3 = 3, .
Then, from the sketch on Figure 1 ,

u

Y= €y *(e, +F)cos £~ & sing (1)

t

%, e}r(ef*i)smﬂ*;' cosf . (2)

When the blade is under loading, let ¢ be the torsional dis-
placement of the section originally at z,, let u be the displacement in the
z - direction of the centroid of this section and let v and «~ be the dis-
placements due to bending of the elastic center of the same section in the
y- and 3-directions, respectively. Then, the original point (2, , y,, 3)

will have the following new coordinates:

-

4

A13

Z,* « -V’{(et-eA +}[“) cos(laa-d:)—;‘ sin(e+ 95)}

"w‘/{(ef“eA* 7)sin(b+¢)+¢ cos‘(/f*?)}

+(et+7]')cos(/¢+ $)-¢ sin{f+9)

_ z, ~ aé
¥= ey +[ (e:,-ey) 77 dz, +w

L)

“(ep *7) sin(B+@) v & cos!Es )

0

y» respectively, of a section orig:-

A A . .
where €, or €, is the value of €30 r
is used to indicate differentialion with respect

nally at 2,. Here a prime i
to z,,such that

. »¢
-

~

1770 ] eéc‘
dz, ' dz,
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The quantities 4y and A;, are defined as

— Z, A d A
Ay:[ (ey-e))-;—g-dz,

and

_ [ i,
A}’r- f (e.y"éy)-;-é:‘ dz-",

0

and give the linear displacements of the elastic axis at x = 2z, arising
from torsional deflection at more inboard stations. When torsional dis-
placements are small, it can be assumed that cosp =7 , sim@p=¢ and
v'¢ =w'd = 0, and the preceding expressions for z, U and}, become

=X ¢ u—v-'(yo-ey-ea cos/r)
-«r'(}o—er-eA sin 8) (3)
y:y, +zr-(7,-c}\¢-Ay

(4)

= o*ar-f-(o-e P+ A .

Since, with ¢ = 0 at z,= 0 ,

- z, ‘
Ay - e}¢-‘[ e, ?'dz,

and

1t 1s clear that




Thus,
Z’= /,.“/_”,n(ya -ey— P Cosﬂ)

~w (g, mey- ey sing)
(6)
_”_l(yo’_e;l -e; cos/ﬁf— 64/5,5//7/5)

-w"(% —e’} -e; szn/f—eA,ﬁ’cas/f)

!/ =

¥y = yol * V"(?o’e7)¢l’}': ¢
(7)

‘= a’-r-w’/-.‘-(a— ¢'+ ‘
%= Jo = €y) G P (@)

where y, and 3, are evaluated for constant /§ and & . By differentiating
(1) and (2), it is found that

/

4= eg, A (3-e5)* e’ cos 3

ie eyt 5 e " el s

and, hence, Equation (6) becomes




v o=l al mr(y, - e, - e, cosS)

.’

W Fo ez ey sing)
- 2,‘/51 (i&a-C},-eﬂ. s/”ﬁ)
- _,,-:5’, (f/o —ey -e, cas/j’)

-{ey- e} V(o 'cos,fv-w'/s/n_,é’) .

Now, by taking any product of », w, ¢ , #’, w’, ', »”and u-"equal to
zero, it follows that

2
’

(2,) _:,\y 2 _(,}‘ ‘z

!,-\,yom’ - (3 Ve 247

vy, -e,-e,cos8)- 2«;‘”(}‘, —e;-€, sm/i)

g

~2v' (e, cos/,.i—cA,c’:"smﬁ,«e;) (9)

+ 2w ('e,', sin ¥+ e, 8 cos ja‘e})

+2¢/|:jo-ey\;e’} +e:,‘ sing)

~Fo -e}\(e;, » e; cas/f)
e e el s
o€y He ey [

10




2

- Let ds, and &5 be the lengihs of an elementary fiber before and
after deformatwn : Then,

cz'soz_ s 2 7y
(dx) = 140y’ )+ (3,)

o

(Z;)z—'-' (z")zf-(y’)z -r(}f/)z

and the longitudinal (tensile) strain of the fiber is

ds-— / 2
€ = ( -~/

12

() +(y") +G ) =147 )= (35 )
7"'(50) +(7‘,)

=yl +

g @Sy ) G 1 () -3
1+(g )+ (7 )*

2

where the last step follows because ds/ds, is approximately equal to unity.
When Equatmn (9) is substituted into this expressmn and it is assumed
that(y/ )’+(5, )2 <« 1, the following equation for € 1s obtained:

The end points of an elementary fiber in the two adjacent
sections are taken to have the same q and the same § .

11




€ = %{(r y +(y’!’ 3 -1 -(y,,’)z ‘(?.I )’}

¢'-2/‘”(y¢ -ey- ey cosg) - w’"(;‘,-ey -e, 5mn8)
+ V'(eé,'aﬁe; cos,ﬁ-c,,/é"sm/?)

+w"(e; + e, sin B+ e, cosB)

=}, "€y )(e'y * e; cos/dﬁ

"{(yo' ey)‘t + (Jv’er)z} /S’I:I

The expression given below for ¢ 1s obtained by letting

I?setv-'r}’

and by using Equations (1) and {Z) to eliminate y, and Fo o




Yy

€= wu- (7~e4)(2r” cosf +w” sing)
-G (w"cosf-v"sing)rey virel w’
+ el (»'cos g+ w! 5”’/3)"'/5/"’4 (a/-’cos/g_y-:s/”/f) (10)
+ @ /{'7 (e’; cosf-e’y s;n/)’)’C(e;cos/g+e} smndrel)
+(q’+¢")/d’} .

The following elastic properties of the section will be used in
the subsequent development:

z
LCEdA=O

EAEA E ZA ——\\\

e.c,

Figure 2. CROSS-SECTION SYMMETRY.

[ @+ (n-e.) £as

13




E8, = [ i-Z"\ (172t -8 )EaA

GJ = conventional torsional rigidity

I'he total tension load applied to the blade section in the ¥ -
direction 1s denoted by T and is given by

T = f EedA .
A
The substitution of ¢ from Equation (10) into this expression yields
U T E_-<€ v —e w - e (U”cos,é’+ar'5/nj"
- Yy ¥ A s
~&le, (w cos s ong)

- ¢ {eA [e}, cosf- e, sinf) *7@:/5’/}

—

Where the average tensile strain is defined by €. = ?’T . This expression

can be used to eliminate «’ from Equation (10), giving
€ = ¢, —(r]—eA \kV "cos/é’ - a)'”S/n/ﬁ\

- & e (o5 F - z/-’.smp’\

(11)

- @ ‘L(rz-eﬂ\(e;, cos g -e, sin £)
_C (ey (_osﬁab ei :-/nj’-et)-f-(q?.f.;—z_ﬁ:)ﬂl} .

Let M, be the flapwise bending moment, M, be the chordwise bending
moment, and Q be the torque, all referred to axes passing through the
elastic center of the section, M, is positive when it tends to compress
the upper surface, M, is positive when it tends to compress the leading
edge. and Q 1s positive when the torque applied to the inboard side of
the section tends to make the leading edge move up. The bending
moments are found by multiplying the stress by appropriate moment
arms and integrating over the section, giving

= - E A (12)
M, fAc ¢ d

14




M2=-£7EedA : (13)

It may be noted that the tensile stress £e of a fiber has components equal
to

- Eel(8'+¢)
and

Ee {(:pet)/g’f- 795']

acting in the 7- and (- directions, respectively, on the inboard portion
of the blade at a given section. The torsional moment due to these

components must be added to the St. Venant type torsional term GJ ¢/,
giving

Q = GJ¢’+fc£ec;(,g'+ $') dA
(14)

7-‘[; /{Ee{(q-et)/f"‘qsb'} dA .

By substituting Equation (l1) into Equations (12), (13), and (14) and using
the sectional elastic properties defined in the last paragraph, the
following results are obtained:

M, = EI1 {w'” cas/—v'” sin 4
(15)

+ @' (e cos B+ e‘; sin f3 +e;)}

Mz = EIz {V”cas/g. zu-”sznlﬁ-q"(e’;, cosﬂ—eés;n/&)} (16)

~Te, -£8,8'9’

15




Eael

Q- {GJ . Tié: ,.(e; cos,é’-e;,\sm/)(E B,-e, EI)pA’
(17)

+(E8,- e, 552)(/5”)2}?5’ v T@; ~ep e’
-(€8,~ e, ET,) g (r"cos fruwr " 510 8) .

Let £, and &, be the ¢-and ¥- coordinates of the local axis
of built-in thrust of the undeformed blade., Then,

ey=dy-et cosf and e,,:da,—et .sm/é’ .

Hence,

7 ’ / /
e; cosd + e’y sing+ey = dy cos & + afi..sm/s’

e, cosf-eysing = dycosf-d sinf-e, B’

and Equations (15), (16), and (17) may be written as

X
"

, = E1I, {ar”cos/é’- vsmn b+ ;5'(0[‘; cas/+a’§, .sm,o’)} (18)

X
u

= E1, {V"cosﬁf-u”sm/" ¢ I(“,; ‘05/‘?"41; 5’”/5)} (19)
-Te,~{(E8,-¢, EL,) B’ ¢
and

16
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L3k

Q= {G‘T+T79;+ (d} cos,@—d"y sm/d)(EBz- ey, EL,) B’

+(EB,-2e,E8, + e;E.Z'z)(A')Z}¢'
(20)
F T(;é: -e, eA)/'

-(EBz—et £1I, )ﬁ’(r”cos/é’,nu”.sm/f) .

If the axis of built-in twist is a straight line parallel to the blade refer-
ence axis, d!; = dg-—:o , and several terms are zero in the above
equations. When the two axes are also coincident ( e, = 0 ), the above
expressions reduce to those given by Houbolt and Brooks (Reference 3 ).

MOTION OF COORDINATE SYSTEMS

In the present analysis, equations of motion are developed for a
rotating blade by finding the inertial forces acting on mass elements of
the blade in terms of the motions about the flapping, lead-lag, and
pitching axes as well as the blade elastic deformations. The expressions
for blade motions caused by rotations about these axes are very complex,
particularly when possible offsets of the various axes are taken into
account. The required expressions for these motions are derived in this
section by a series of transformations, each showing the effect of a parti-
cular rotation and/or a translation of the origin of the axis system,

The first six coordinate systems which are used in finding all
the blade motions exclusive of elastic deformations are shown on Figure
3. Two additional transformations will be described later which give
the orientation of the blade reference axes relative to those shown, The
O0r Z; ¥, ¥, System shown on the figure is an inertial system. N is the
constant rotational speed of the rotor about the z-or 3 -axis, in radians
per second. The 0,7, y, 7, system rotates with the rotor. LetU;,V,;, W,
be the linear velocity components of the origin ¢; in the %, ., 7, directions
and p;, ¢;,7, be the angular velocity components of the g, v,y y, systemn
the Zir s 0¥ directions (i =1, 2, 3, 4, or 5). Then, i

U4=V’=W1=P1:?1=0’

r1=_Q_.

17
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Figure 3. COORDINATE SYSTEMS.
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The 0, ¢, y, 3, system is obtained by rotating the 0,¢,4,% System
about the negative y,-axis (which is parallel to the 4,-axis and located at
z,=re ). This rotation angle,,dF » is the flapping angle of the blade, and

it can be seen that
U, = W,*0, V, =l ,
p,=lsng., g,° -/,5’;, , r,= D cos b,
The 0;z; 9,3, system 1s obtained by rotating the %%.Y,3,5ystem

about the 3,- ax1s through angle4,, the blade lead angle, and then trans-
lating the origin in the z,4,~ plane to Xy2rz, and ¢ s e, , so that

P = P2 cos‘,é’z, 2, 5//7,6’_2,

O s:n 8, cos £, - 5, sin g,

4, = gz cos &, ~ 2, sin 3,
== smngy smg, -4, cos g,
o= rrfp T Ncos Sr g
Us = U, cos Sy + VY, 5:n 8, -7, (ep cos 4, - 7p S0 8, )

ﬂ{rF sin &, = (ep CoS 4, ~/ry SN ,d”p) cos/é"‘_.JL

Vs =V, cos 8, -V, sind, rr, (ep5in8y * 70 cos 8,)

0 { 7 COS By rlepsingy = rppcos ) cos/S’F}
w; = W, “ﬁzep"?z"';p =Ne, S/n/Fr/g;_rFD ]

The 0, 2, 4, 3, system is obtained by translating the origin of
the &, ¥3Y,§; systemtoz, =7 , g4 e,  and #::¢, , so that

19




b, = Py T N sin B, cos ,6’1,-5;_. sin 8,

~

4
]
o0
N

-0 s 3, S/n/ip -/.5’;_ cos/j'p

Iy * ry = ﬂcos.ﬁ’FrBD

Up = Uy g, Co-T3€0p

[

Q{(r, -Cosin B, Ysinjg, -(e ,p* ©p €05 3" rppszn/zfp)cos/d';}
- /5:5 C, cos B, -/‘3;980;0
Ve = Vst rsrpp =260
= ﬂ_{(r‘F -Cosing)eosf +(n,+e, 58 +r. . coS/jb)cos/ch}
t S Cp sin 8, r/g.p "op
We = Wy = presp =2, 700

= Qfe,+ €058, * Top 5’”/3.2')5’”/&; *fe (,'FD o0 €SPy~ Cpp 58, )+

The 2, y, 35 system is obtained by rotating the 0, z, y, 7.system

about the Z,-axis through an angle,dp , the blade root pitch angle, so

that

20




Us = Uy

n {(r,_. #ropcosf. = Cpsin g )sing,
~(pp * €, cos f,) 505/5;:}
"B Cp <03 fo= /5 esp
Vo = Vycos B, *+ W, sing,
= N [{(r}__ 75 C05 Bo=Cp sin B, ) cos g,
+(pp * €5 510 Bp) cas/fF} cos g,
+ ey + € pp COS By * Ipp sinf,)sing, sm/j"{l
* e {CP s1n By €05 B+ (T * Tpp oS8y €pp 51 55) 5”’/5,9}

t o Top €055,

=
'

W, cos/é’P -V, 5"7/5/-'

el |:(ep * €pp COS Pyt 7, 810 B ) sin B, cos £,

- {(’"F * 7pp €05 f. = Cpsin B )cos B,

t(r,, re, sm/3p)c05/3F} 5/n/5p:| —/ﬁi Top 3785

*/5;F {(‘"/—'p * Top COSL, = epp5in By ) cos B~ Cpsin 5 ”’7/5,0}
Ps = % "o

= Nsing, cosf,~ B, sin B, */5;9
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TSI,

iy

' . ‘ y )
N{cos 3 cos 5 = sin>_ s3I sns, )

i}

- 2 - 2
S cos 7, sn jp ,'31) Cc‘SlJ’P

These six relations may be written in matrix form as

~—

— - _
,05 ’ I'St, ,“f 0 1
' i 7 -~
1 ) ! 5 oy ™
' I 2 R P A Q
7 S = o 2 21
st 7r r “r 0 Be (21)
ponany i‘ _ < . >
3 v | S, = 2y 0 Ao
o
‘ ~ .
Vb } t Su 4 v DV O /SP
3 k J
L\V5 ‘j Sw Tw DW 0
i where
p.
3 Sl‘ -7 :‘: «(§ “i_-w
[ 57 = 08 S 3mE, -8 s r 8 cos )l
b CesoNes Nl uis s = s S sin S, s,

v
(2]




Sy =(rerrepcos 8. -Cpsinf )sinf, - (€, »e,cosf ) cosb,

5,

2

"

N

<N

<N

*E,*ep, cos B+ r,, sin 8 )sinS. sin8,

r

—{(r,_. I cosg. -C, s/n8.) cos B+ 7porep sm/dp)cas/o"c } 5”:'/;,

+ (ep rep, €SS, 77, , sm/fp) sin 8, cos/ap

= - Sln/fp

= -»cosﬁp cos/ﬁp
cos/é’p sm/é,,

-C, cos &,

n

(Tep* Top cos g, -y, Sin 8, Vsin g, »C, sin B, coss,

(er * Top cos G, -ep, sm/d;)cos s, - C, smnb, sinl,




I

It follows from the preceding matrix, e.p., noting D -0, that

- B : . 1
: s F. 0 , ‘t TS, A0 l
|
| ) . .
- 2 4 | -
ts ) ‘4 * . ' 5% ¥ % ‘ 7
! K . . . i N (22)
| ':5 e I < T 5, v o,
< = <A S+ B
. » e z | <
IR | e, o0 Poos, s 0 ’5 .
b [ s J N
y : F ; - - D
Vs i ! F;/ D\' J ' Sv ’bv Dv i J
i . . . .
We | LFM DN 0 ,j LSW “.hl Dw J

As mentioned previously, the final equations of motion which
are obtained tor tinding natural vibration frequencies and mode shapes
ot rotating helicopter blades are stmplhified by the omission of terms of
neglipible importance. These equations could be obtained by first
working cut exact equations and ther linearizing them. However, a con-
siderable simplitication can be obtained 1n the analysis if terms are
dropped 1n the course of the derivation when 1t becomes clear that they
will lead to negligible terms 1n the final equations,

The first time derivatives of the blade flapping, lead-lag, and
pxt\.hmg angles (1. e., 4. , by » and4,) appear explicitly on the right-hand
sides of Equations (21) and (22) and also enter implicitly through the time
derivatives, Sp.%p , ¢, 73, Dy, etc. The ratios of these time derivatives
to the rotor angular velocity are assumed to be quantities of first order
which are small compared to one. This assumption might be justified,
tor example, by assunmung sinusoidal oscillation of the blade at a
trequency of 10N which involved a blade root flapping motion of
Ae - 0.5 deg. = 0.00872 rad. In this case, §./n = (1002)(0.0087)/Q = . 087.
Lower values of thts ratio would be obtained at lower oscillation fre-
quencies and amplitudes ot vibration,

It Equations (21) and (22) were used 1n deriving expressions
for the absolute acce'erations vt a n.ass point 1n a blade, a number of
terms would be obtained 1nvolving products of 4, , y A .and 4,. These
products could be neglected because they would give higher-order terms
1n ﬂ,/ﬂ ,5 N .and 6 .l 1t the expressions were written in a suitable
nonoxmensxonal 1orm. Some additional terms would be tound 1n the
expressions for the absolute accelerations 1in which4, , 4, .and , would
enter linearly. These terms could be 1dentified as Coriohis accelerations,

The Coriolis torces acting on a rotating blade produce
couplings beitween vibration modes which are uncoupled when the blade
is not rotating, These intermodal couplings are unusual in that they are
oroportional to the time rate of change of the variables ( 4. ,/4; , and 4, )
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and they are unsymmetrical. An interesting consequence of couplings of
this type is that the exact solutions for the 'natural vibration modes' of
the rotating system would give motion in which all parts of the elastic
body would not move exactly in or out of phase, However, these effects
are small in the case of rotor blades and can be safely neglected when
computing their vibration frequencies and mode shapes.

It follows that the terms involving 4, 4,,and 4, in Equations
(21) and (22) will have a negligible effect in the final equations and can be
omitted in the following derivation. Thus, Equations (21) and (22) are

simplified as shown below: (

Ps ] ( Sp ]
% S
Ts S L
S ., F = s, oo (23)
Vi s, |
W, S .
L ~ " J
( 7 ( . . A
Ps FpBr * Ao
¢s Fr /3/-' * D?/‘é.D
< ’ts 5 = < Fr/é.% + Drﬂf > . (24)
Us Fofe *+ Dupo
\.’5 FV/'é‘F ¥ 'DVIé.D
st_ &Fw/;r:*Dw/‘é;;_

The (1'1' yl’ }’1)’ (12’52’?2)1 (’-’;:.9,:}'3): (zgnyy.’?;)o and

{24, [ ;s) axes systems have been introduced in order to define the

linear and angular motions of the blade due to shaft rotation and motion
about the flapping, lead-lag, and pitching axes, The zy3 axes system
which is used as a reference system for the blade has a tixed orientation
relative to the ¥, 4,3, axes system, as indicated on Figure 4.
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i

Figure 4, ORIENTATION OF zyy-AXES (BLADE REFERENCE SYSTEM)
RELATIVE TO 2,4, 7,-AXES SYSTEM.
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The zy 7 system (with the z-axis being the blade reference

axis) is obtained by rotating the Z,y, 3, system first about the

-axis

s
through an azimuth angle 8, and then about the negative y- axis;‘through

an elevation angle 68¢.

Thus, the rotational velocity components of the
zy3 system in the 2z-,4- ,and - directions are:

p=(p,cos 8, +g,5m6,)cos6, +rg sinb

w
H]

g €os 8, = ps 5/ 6,

~
i

rs cos 8 ~(p €05 0, + ¢, s E,) sin 6,

They may be written as follows using Equation (23),

-~ -

f‘ 7”5T

r 7s
L J . J

¢ =l =07 ] 3%

~

3

where [?’] is a 3-x-3 matrix with the following elements:

ad

v, = Cos 8,cos 6, ¥, = 51 6, cos b,

15 = — 88, 7,,° €05 6,

7’3’ = ~cos 6, 5/n9£ 7'32=--su-:6"‘l 51n 6,

?;3-'-‘ 50 95

(7'25 =0)

¥y3 = COS G,

Similarly, the translational velocity components of the origin of the zy 3

system in the ¥-, y- and 3 - directions are given by:

rU -1 ~ N

<
]
|
=3
(-
o<
H
"
=
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The 1y components of the angular accelerations of the zy3
system and the linear acceleration components of the origin of the
747 system can be obtained from the z; y, s components by the same
transformation, giving

(4 ] PR Y YA

V’ ?:[f] 4 Lz[?] $Fafe + Dy fp b

- J \;5 i ‘Fr/é,.e * Dr/pr
and

o B e e o g )

LV FET] 3 v 3:[7‘] ﬁ Fife + Dufy %

\Wd ~Ws J _ \FV/T.F + D, fp J

The total flapping angle and flapping acceleration can be
written as

/JF (/gF)osul. * :Ji‘f-'

/é F B (/5 .F)OSCI/.

where 4, is the steady or average flapping angle and (,5,:)“‘,,_ is the
oscillatory component of the flapping angle. A similar breakdown into
steady and oscillatory components can be made of 4, and 8, and the
elastic deformations, It is required that final vibration equations be
linear in the oscillatory variables. This will always be a reasonable
approximation for sufficiently small oscillations,

In addition, the mean angles /é\r ,,5'; ) andlé:, » the azimuth
angle (8,) and the elevation angle (6,) are considered to be small which
leads to simplifications in the equations for the acceleration components
obtained 1n the next section. Although these constant quantities are not
considered to be as small as the oscillatory quantities, they are assumed
to be small enough so that their squares and products can be neglected
when they appear in the coefficients of the oscillatory variables, When
the expressions for » , ¢, r , etc,, and simplified accordingly, for use
1n the next section, they take the following form:
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A ﬂ(ee"/gﬁ)
4= 0P
r = {l

U= ﬂ(rpp;rrpelﬁ-ep)
V= -Q(ep 8770 €5 By~ Cofor)

We N €,6 *€ fr - 75 Fp)

L {25)
B =B Crpo) fr b * oo
= fofo B 6
P e Bt By fp Be
U=- 4 {Cp-(rp-rp) 95} *ho C€op " Top 64)
V=4 {GP@ +8,) -7 m} * Sy (€20 6,7 75p)
W= 4. (C0, #rp-ro=eppn ) * B (€0p0c™ 700 P ) |

The blade is a beam in the ¥y} system cantilevered at z = 0.
Consequently, a mass point in it can move relative to the xy3 system as
described in the section on the elastic behavior of a twisted beam. This
motion will be taken into account in addition to the velocities and accel-
erations given by Equation (25) in finding the inertia forces acting on a
mass point in the blade.
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VOCELERATION OF A MASS POINT IN THE BLADE

Fhe sbh-obute velocity and acceleration components of a mass
puint relerred to o anoving voordinate system are given by the classical

NPT ssIons

|
4
]
§
1
1
. 3
vy T e ms t 72 [ & (o)

L4

= e V- rx ’#t;}"zi‘,fi‘,’}:). rY e
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In the present case thexyy axes are the reference system for
the blade. In the section on the motion of coordinate systems, expres-
sions were derned tor the zyy components of the linear « clocity of the
origin of the zy3 svstem and tor the components of the angular velouty o
the zyy systemi. Expressions were also obtained ter the time derivatives
of these components, The approvimate torms ot thuese espressions for
£y W, given in Equation (25) are to be substituted into Equet:on (27T,
Equations (3), {4). and (5) derived in the section on the clustic bebavior
of a twisted blade espress the coordinates ot a mass point o! the blade in
terms ot the vlastic delormations., These ¢xpressions tor ¢ . 4 . and 3
are also to he substituted into Equation {27). ) ‘

The underlined terms in Cquation (27) represent Coriolis
accelerations associated with the velocities of @ mass pont relative to
the 1y} system arisiny trom elastic deformations ot the hlade, A=
discussed earlier, the 1nerfid couplings produced by Corioli~ torces have
only a small influence on the vibration treauencies and mude shanes ol
rotating helicopter blades and can be neglerted.

Some new notation and some changes 1n notatior vabl o ade
in carrying out the ahove-mentioned substitutions, The gy mbol v « L 6

longer be used to represent the 3 “omponent nt ar yular s elucdy but wall
be desined by

The physical signiticance ot the vedelined audantily, 7y« an Le ween most

readily tor the case where 8, &£ - 4, 6 &, ¢ vhereat 8 the radaal
distance trom the rotcr shatt to o Llade sectomn (b b Y v e roro gl

to the blade reterence avs),

The detlections o the vlastic o0 nothe 4 oo pooTa LT
elnch are prodieed by the total curmoabed «live Te ol e
are depoted Pespeduely by

A LRI B SN |

- — A
. - " y
I then tubboo o coi Y v oio o G end a1
(i
¥ T T 3 ¥
4 | T + . bs Y P " £, -
(20
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Only very snall oscillatory motions ot the blade ahout the
blide steady contipuration are considered. Lot o, & é. 4. 4y and;'p
be the steady portions ot 1, .0,, ¢, 5, 8 and 4, respectively, while the
Litter et o1 symbols will represent trom now on only thexr oscillatory
portions, ( The subscript 15 omatted trom the savivhol A4 .., usedn
the lprv\mn:a ~ection leaving the symbol o) tor the escillatory tlapping
angle )
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and

Here the total compoenents of the abaolute acceleration are
dencted by &, . ¢y .and E,, : the vscillatory components by «; , &, ,and
24 . and the steady components due to 1 by &, , 4. and é’,_.

As discussed carlier, 8, and 6, and the steady purticns ot the
nondimensional varables are assumed to be small quantities although
not necessgariiy as amall as the oscillatory variables, The squares or
products of these quantities are neglected in the coefticienta ot the
oscillatory quantities., However, products of thegse quantitics have been

retained 1n the nonoscillatory parts of the expressions which enter into
the determination of the average deformations,

33

)




/

It c:ulx be readily seen that the inertia forces produced by the
<, component ot acceleration are essentially in the axial direction and
are, 1 general, multiplied by oscillatory angles or moment arms in
the vibration equations. Hence, after inspecting Equation (30), it
appears reasonable to approximate 2, by the familiar expression

2
T, = 2y =-0'r (33)

dropping terms already multiplied by oscillatory quantities plus a few
additional small terms. These additional terms which are dropped
would be much smaller than the one given above except possibly those
very close to te blade root.

A sinalar simplification of the expressions for ¢, and Z,, is
not possible since no single term predonunates for these components
and the corresponding inertia forces act normal to the blade axis,
However, when the above formulas are used in obtaining the blade
mertia loading later 1in the analysis, all the underlined terms in
Equations (31) and (32) will be dropped by considering that the geometric
citedts ot the steady detormations #, & , @ and/ on the oscillatory
motions are either neghygible or would be included in ey, ¢4, 4, 6, and
B¢ . (That 1, the mitial blade contiguration would be denned mcludmg
the steady detormations produced by centrifugal forces,)

BLADE INERTIA LOADING

The inertia torce on anantinitesimal element of the blade is
obtained by stply aedtiplving ats mass times the negative of its abso-
Bate e celeration as given by the esxpressions 1n the preceding section,

b or vonsentenc e on the tollowang analysis, these infinitesimal forces are
b grated over o seclion to obtain expressions tor the 1nertia forces and
thurhents 4 ting on the blade per umt span, A blade section is con-
sidered wiuch - perpendicular to the 2-axis of the blade reference

A ~fem oond docated at ¢ 2,10 the unloaded condition, The components
03 ane rlaa toroes and moments per umt span acting at this blade section
are trs! deteraned with respect to axes which are parallel to the
bhede roterence -y stem but whose origin has been displaced a distance

1 1, tlonyg the 7-asis, The compoenents of the inertia torces are then

totd relative teoases which are parallel and perpendicular to the blade
hoetd tar the gaven section,

[ -, with o bewng the mass density of the blade material at
AN e nlary o russ=secltional area dA. and 24, 24 . Z‘.’ being the ahsolute

aceelerations at Z4, the sin torce and moment components per unit
it G te
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The moment components abeut the elastic axes of any blade
section are readily computed from these inertia force and moment
loadings.,

The expressions tor &, Z, , and Z,given by Equations (31),
(32), and (33) and the expressions for y and y given by Equations (28)
and (29) are to be substituted into the above equations. and higher-order
terms in th¢ oscillatory variables are to be dropped as 1n the preceding
section. The initial position of a blade element which appears in these
expressions is then written in terms of the section coordinates indicated
on Figure 1 as

11

95 ey - neosf - G sink

n

¥ ey r nsinf v g cosf

It is convenient to define the following sectional inertia pro-
perties for use in the further development:

m= | pdA ch—ﬁ-‘[,?/adA
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j:yo,odfi ’”(ey*% cos §)

j;;o pdA = m ey 1, sinfB3)

mK, & £ }:/odA = m(e; - ey 7c5m/5+7€;>m2/5 - é,zcoszlé’)
mK, = /A‘y:/adA = m (e; - 2ey,n. 605/54-;é: cos’ &+ f,,sm'/.Y)
»:H:[yo g, OdA= M {cye} r(e\y.s/n/fre},cat’:/f)qc

+ ()é;- t:) sm/icos/f}
r K = i‘*e‘; +e; =29, (eycos/ff-ea,sm/f)

Ky~ K, = (70: -4 )cos 28~ e; - e; =27 (eycosf-ey smnf) .

Also, since the blade is assumed to be symmetric about the chord line, it
tollows that

fcr,aam-o, fr]C,odA:'O, ete.
A

Using these properties, the sectional properties defined above and the
expressions for 2, , 2y ,and 2, (excluding the underlined terms in
Equations (31) and (32)), the inertia loading components become

By L mr (34)
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By ~m b orm (), sing)p

(6t f,) (€t eq i, sinB) 4

frrr 0y s 0 ey g, 5100}

- {95 (r-rp)+ ey + p. smﬁ’}/frp

+ N [z/; -(7, SInﬁ)¢-G,€D-{e7rqc s:nﬁ+(95*/§p)("’})}pj

+_cf»,(c,,-64rp-/6prp+ey+7ccos/6’) (35)

By = —m iy - m (g, cos )

_m{r_,a,__+e£cp—/<§;) ) +,é‘p)(e5*qc605,é’)]’ A e
"M (ey,r ey +y 03B) 4,

- {94 (r-rp) +ey +n, 505/9}/5’}

e {,/F *(e,rey+g, cas,d)/fp}

-'m (6,44 ) r (36)
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ol e ey e, Aoty on sm/s)}}/a

S R s O {K “€opley e °°5/”}_! /o

-mlir-ry" {‘94 ey r7 cosf)= 8. (€4 + 1, 5”’/”}" KJﬁa
L

3\
- m {(95* S )r+ e, 1, s:n/fJL 7,
-ﬂ}w(e,-éi_, ra" 5; rp €y v cos8l
- m {(e,, -6,r, -/5’; 7,0, cosf (8- % )cos 28+ n (e, cosf-ez5m )}¢
- m ["\ey"?c cosfB'B. -7, ('e} +nc sn8)p,
r / N ’
t t’(z—K' - 6‘_,(6_,/ -7, cos 8'-(6, * B, )(f'-r’P)(c2 +7Csm/8) Bo

A

- .ﬂ.znz {H-r(ep -6, ”o',’-'fp ra) €3 =g, >N 5"‘*(6’5 r_ﬂﬁ)r(ey "1, caslé)}
(37)

j,= - Qmr {«f,*v'/c °°S/3‘¢}'ﬂmf<ear*’/c5'”/5) (38)

and

- : o m e 2 S e ONriey - 2
7_}_ -0 mr{vr Vs /3,9‘5} 0 riey r/cc,osli (39)
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In the expressions for each of the components, the last term does not

depend on any oscillatory displacement or its time derivative. There-
. . A A A A

{ore, these are steady terms and will be designated 2, ., %, . Py » %y

4y , and Q} for easy reference. (Note thatg, = p, =Q'mr.)

In the subsequent application of the associated matrix method
for finding vibration characteristics, the blade is divided into spanwise
segments, The treatment of individual segments employs axes which
are parallel and perpendicular to the blade chord of the segment (in the
unloaded condition). The figure below indicates the resolution of the
loadings and deformations into components which are parallel and per-
pendicular to the chord at a particular segment,

A
12 Fp 5)“’)37:4,-:;
\ b4 ¥

\ _

bt /.

7—’¢ — -y
Pyr ¥r eys &y

Figure 5. wISOLUTIONS OF LOADS AND DISPLACEMENTS PARALLEL
AND PERPEDICULAR TO LOCAL CHORD.

The deformations of the elastic axis due to bending are denoted by 9,
and &, and the components of the total deformation due to the combina-
tion of bending and torsion by 8, and §,, . The initial coordinates of
the elastic center and the axis of built-in twist are denoted by (e, , 2, )
and (4, , 4, ) respectively. These components and their derivatives
with respect to # can be found from the components relative to the

X- 5 oy ;—axes by the following transformations.
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(‘Svt‘ 1

Gae > §,,8, ord))= (w,, w, w/ or &”)sing

, 8., or é‘,") = (art , w, w]or w”) cos

-(1,?, v, v’ or :f")s:n/g

4-(?/ , v, v, or z/'”)Cos/J
ézf or &,)= (e, or d;)cos,é’- (ey or d;) smn g4
(61 or .;.’.; h(e, or d})sm/f * (ey or zz’é’,)co:-s/d )

Expressions given below for the components of the force and

>

moment loadings with respect to axes which are parallel and perpendicu-
lar to the blade chord are obtained by similar rotation transformations.
It should be noted on the diagrarn that 5 and #;
loading components perpendicular and parallel tu the chord respectively
and §, are the moment loading components taken respec-

but that g
tively about axes which are parallel and perpendicular to the chord.

57 cosf - ,{} sing

z - mb":— 7, 95'

are the inertia force

(40)

- {(,--r:: »~ 65 CP—/;epP) Cos/- (GAr/é; )(CPSIﬂ/g* e"?c)} d.F

fm{(r—r‘p\smp’-epp (Gicas/d—a"smﬁ)‘ O (ezf-% )} ’613
—m{(r-r'p (O 55+ 6, cosg)re,+ r]c},é;;,

2 h)
-0 m{GZt.os/a’a»n S- J,tsm'o’- (g, s '/o’)¢}

2 2
=L mr o cosIE, - (1 ;);\r',,S/n/j“/ﬁ',,

-ﬂx;,, {cp coslo’ re,+n, )cos 2B -¢e, 528 -(651}2:,)(7‘-)‘,‘5/0,8}4

- 'by (osl,a' - % om/:s
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P-} sinf "/Ey cos/f

-m 5’-“ - {(r—r,wé c, -/sie”) s1n B+ (8, * B, WC,cosf+ e, s} £
_m{(r-rp)a:s/[f o8, 5B+ 8, c058)-6 e, } A

'hl{(r—rp N6, cos 8- 6, s,n/g) +e,}/6’;

+ ' {5" casa/o’- S, sm,o’cos/i-(:?c s/n/cos/d) ;4}

-0 omr LRV~ -0’7 (7, cosf),5,

—.Q’»z {ep sin (e, ) 507 2/6’+ e, cos Z/f(é’t.rlda,)(r-rf)cos,d} s,

*pysnf P, co3f (42)

Py )

= iy cos 8 - ;y 5’”/0’
s (o 5”4-;} cosld’—é‘)’ sin & (43)
ﬂ = i’ .sm/f}'} cos 8

==N"mr 5“ + '7\:‘/ sm/f * 73} cosf (44

When the quantities C, and 63 are defined as below,

O
1]

y = €yt cos 3 = (e, rp )eosS-e, sng

C'}:’—- €y *+ 1, SIn/é’ = (equc)s/n/j+e1 cos 8,

it follows that

/ C"7 cos f-Cy 5inf = (e, +q,)cos Z/S-c,s/n 28 \

e ar

Cy smnd rC} cosf (e rn,)smifb +e cos 2/6‘/
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7, <" ),.\t““9y‘7c‘5“_1-}’?C2§2t"7’?(é2*'7c€&)¥

- {(r“rF - ei_c,-,oi ) Cy -6, *,%)(K‘- Cp C})} /5,_-
- m{kr‘-rp 8 ey, Cs - 8- (K *epp Cy \}/5‘;:)
-m{(r'—r‘a‘(vk Cy +8:C) +kt A,
-ﬂ;m{(ez rn Ycos 25 ~e, sindS

(e, -8, r, -,5; s )COS/’(GE*‘/éF) "5"7/‘5} 8,
-0 {(e, ~n.Vsin 28 re cos2f8

ep- e, r*,,—/j; rp/\ s 8 +(’6I +/6:,)’r cos/,d’} azt
-n*m{(cp - 8, rp-,si rp) IICCOS/df(t;' ?‘:) cos 2,8

v, (g cos28-¢ s 2/8)} 4
“Qmr Gy B s Wimr, €y 5

-0 {'(2 -K, +ep Cy - (95*/3‘,)("- 7! C;} Aot é—\x . (45)
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J
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In the computational setup, the blade is divided into a
number of short bays and the mass of each whole bay is considered
to be concentrated at the mid-span of the bay, By considering » to be
the mass of one bay (equal to the product of the span of the bay and the
average mass per unit span of the bay), all the above expressions for
the p’s and g s express correctly the inertia loads ot one bay.

ACTING BENDING AND TORSIONAL MOMENTS

In this section, expressions are derived for the bending and
torsional moments acting at any blade section within a given spanwise
segment or bay of the blade as a tunction of the loads applied at the
outboard end of the bay and the deformations 1n the bay, These
expressions tor the acting moments are combined with expressions
for the elastic restraining mcments 1n 2 later section 1n order to obtain
differential equations from which the total deformations across each
bay can be determined. This solution tor the detormations 1n an "elastic
bay'" is carried out considerinpg the bay weightless because the etfects
of inertia forces are introduced as concentrated loads at the junctions
between bays.

Consider a short bay of a blade between = - ##*' and r» - #577""
with constant #,e,,and ey, These constant geometric parameters are
designated #47' , et ,and’e}’ . The total load acting on the outboard end,
wherer = r'?’, has the force somponents 51 ) Py , and P, and the moment
components §,, 4, ,and §,. These six components can be found
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respectively by antegrating the inertia loadings o0 2,0 6« 3,0 $y. ant g,
trom r-r? to the tip, The pitching moment 1y taken about the mtersec.
tion of the z -axis and the plane of the outboard end of the cross section,
(As usual, @, is positive in the negative y -direction while the force
components and other moment components are positive in the po-itive
directions indicated by their subscripts,) When all terms containing
any oscillatory displacement or its time derivative as a factor are
dropped out, the load components are designated by .3,: ) @ ) P Q,, 0, and
a, and may be called the steady portions of 5 @ ,)‘5? Qs Q’ ) and Qr )
respectively.

A local coordinate system ( 2(r), g, 3(7) ) is introduced in
considering the moments acting on a section at

. ('-’
r= - s Oes «ri 070

The origin of this system is at the point where the elastic axis intersects
the section. Let @ yp, , @y, ,and @y be the components of the total
moment acting on the section refcrred to these axes, ( @,yand Q,,,,,
are taken posxtxve in the positive x(r)and y(r)-directions but a,(,., is
taken positive in the negative y(ri-direction.) It then follows that

- - (£ 2 - — (s - —
Q :Q‘r(c;vur;)Py~(e;,+yr)F;

x(r)

ll
Q yir)

= "(e '-r:f‘f)é“quy

- e l' — - —
QJ"’ x Q’o-(e; rv;)Pt * ;%

where 1t 13 understood that £ 5r . # cetc., are force and moment com-
ponents applied at station r o +while ¥z and &, are elastic axis
detlections at station » , When second-order terms 1n the vscillatory
variables a~e dropped, these equations reduce to the tollowing:

- % gl = — S i,} 5 -~ ’5
Tr Qt*c) ':} Ty %y ‘:;' e Ty
d i, -l B sw, B +s5
g y Y z fz 3
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Here the steady deflections of the elastic axis have been included in

the definitions of ¢’ and e,) . Since the blade section is not normal to
the z -axis whcn there is bending deformation, and the blade chord is at
an angle (,d’ +¢) relative to the y(m-axis, the above moments must be
resolved accordingly, 'The true Jocal flatwise bending, chordwise
bending and torsional moments (which are to be equated to the elastic
restoring moments M M and § ) are given by

/7,’ = (ay(r) + QI#)VI) ros(/g’.;. ¢)- (Q;(ﬁ - on-)“f ) 5’”96(’3‘¢)

(Qy(r‘) Q II')Sm(/J’viys) (Q (r) ')Ca.sfd(’) ®)

and

Q= Qupy” Qy(r‘) e Qy(r) w’

respectively, After dropping small terms of second order, subst1tut1ng
for @, , Qyr;,and Qyr~ » and using the conversion formulas in
Equation (40), the above equations become

M=Q+el’BeE 5, rsB G 8 -@,+s8)¢ (47)
- = 9= A= 5_7X 8 . (3 >
szQb'ex'@*aazt*se_Qzaf+(Q¢* sR)¢ (48)

(49}

— (3) = .
R = ﬁy .sm/j" + /_’9 cos B v
0:-0 LA )
@, Qcosp Q, sin 8

0 = Qg sm,d cos,d”
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~ A Uys A ) A () A (5
Q, =(Qy+ e; P, )sm/f )-r(Q’-f- e;’ Pz)c‘”,‘g 7

~ A (p} A ) A
= D - .
Q= Qyre, ey 5y

It will be recalled that

v, = r-4y4 , w}awﬂhAr,
t’ ’
Ay E 6,¢'_{ e, Py, , and
= - X ) = =
A?—ejsé ‘[ey¢ dyx,. (=0 at %,=0)

Once the shape of ¢ vs. z, is estimated, say ¢,,,, the following two
quantities can be computed at any desired » :

= - ! £, ’
Eyseys B [ 7oy P 4%

E, = ~_1-fx’e ¢I &r
y-ef/ ¢'€st A ¥ Test o
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” u/—tcos/—z/;sm/d=5,+5'z¢
= w,smp + v, cosf = 5

E,= E} cos/é- Ey sm/S’
* where
2 = E; sm/f # 55 cos,é’

Since the steady portions of the moment components only
cause steady displacements, they may be dropped when only the oscilla-
tory displacements are being considered. Thus, the following
expressions for the oscillatory moment components are obtained from

Equations (47), (48), and (49):

M1:Q;*é51+5z5;'<§b-52é)¢+(e—é")s (50)

"0+ 8,0, 8/ (6,508 + (545 9)s
(51)

A ~ ’ ~
-F8,+Q,6 -Q,86,

2

(52)

where

AR AL (=54 =0)

— A A A (’) #

Qa.= Qa- Qn— ( a Q5 Cosﬁ - Q} sinfs )

0,04, (4,28, ump - cos )

b b5 Xp 3 y - Vi Ty 7

Qa.’: éx-Qi
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* 7 ume of the tormulas i Evquation (46) (with 2 Leing the mass ot

the ¢ ™ mass bay concentrated at » = »*') yields

: QZZ m' ot (¢ =1 for the tip mass btay.)
A 1 ) A g“ () (£)
Pa,'—(ﬂCOS/sl)(eg*'/gF)i; m r

A £ ()
- sing7) ‘E/: m‘”Cj (‘)-f(eP-GA re =/, r‘l,);,: m"
t * (h
/i z -(ﬂ' sm/f/’)) (95 +/5F )5_:; m(‘)r‘ “

+(n.'cos/3(’) i n“c (‘)-f-(e,, ~6,7, /J,r )Z

b
~ (‘
Q,~ -nt %Mmf/“*(e -6,7, ,d,r',)Zm ¢, ’

%
+ @, B )Z., »;{‘)r'(‘) 6,"’
Z "(l) C (l) 9 rp ,60 )Z
- s ) < t ) &)
n e, (9‘ f/!‘) & mr

Q,=-(Q'ewsp "’)(z @@, (' l/)z @, ()

et

£
s () (e) 400 (5 ') ()
o5 e 5 i)
«z7 =7

and

- -( S/n/fﬂ)(i W 6o (,)Z (d)

4 #
2 (3) ) ( ) () (¢
-(n cos S )(Z m(‘)r(“CJ, 7 m”r(‘))
izt

!
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The mbration analysis 1 carried out using a model o whidch
the blade 1s divided into spanwise segments or bays, each of which 1s
considered to be a uniform beam without twist. The actual twist will

be taken into account in the model by introducing discontinuities in
twist at the junction between bays as indicated in the diagram below.

L. EI

INBOARD
BAY

OUTBOARD

2 &\(t- b) _a , 4 . \(o. b.)
Q. a b q,
8 @ -b 8,
3, a b 8,

A b a A
Q, b a Q,
&% = b a 8 >
8, b @ s,
Q Q,
¢ ¢
A A
Ao /Bp
) - i Qgp )

Figure 6. ANALYTICAL REPRESENTATION OF BLADE TWIST.
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P cbo ont ot B codunan taalrs oy, which ate das pdaved
o Livure toare the tdatwise and chordwise torce components (£, . P, );
the bending moments (Q,. q,); the torsional moment (Q, ); the flatwise
detlection and tlatwise slope (8, 8, ); the chordwise deflection and
chordwise slope { 8,, 8, ); the torsional deflection ¢ ; and the flapping,
lead-lag, and pitching angles (8., 4,, 8, ).

Some of these quantities will change where there is a twist
continuity because the flatwise and chordwise directions are defined
ditferently on the inboard and outboard sides of the junction, The
changes in {4} across the twist discontinuity can be found by multiplying
by a rotation matrix [R]. The nonzero elements of this 13 by 13 matrix
are:

B way L (ob)) | .
l?” = cos&:f -/3 2, for (= 1to 8 H

_ . - R (1.6_)‘_ (0.6) - _ .
Ris = Rop ™ Ryt '?43 B —5//765” /8 ) b ;

R.,= R =R, =R, = sm(lo’("é’)-/o’wb'))=b ;

51 02 73 ¢

and
R..:':I. -For..=qfo/3.

ol

The form of thef_:?] matrix is indicated explicitly on Figure 6.

ELASTIC MATRIX

The 13 by 13 elastic matrix[£] relates column matrices for
the inboard and outboard ends of an elastic bay of span £ according to

{A}(c_e.) - [-_E] {A} (ce.) (53)

where {A} 1s the column matrix indicated in Figure 6. Since £, 4, ,
R, , 8, » #,and 8, do not change across any elastic bay, the only
nonzero elements in the lst, 5th, 9th, llth, 12th and 13th rows of [£]
are

= = = 5 = = = = 7.
£, 36557 E4 Etos Evzrz ™ Eira
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(L@ (#e ) PP
Q.‘Z = 2 * [/2
and
(ce)d 0e) (oe)
= +
q° = a, LA,

there are two nonzero elements in both the 2nd and 6th rows; they are

Ezz =L =1 and EZI = £y =4

The rest of the rows of elements depend on the elastic properties of the
bay and are derived in the following paragraphs.

“he differential equations for the deformations of an elastic
bay are obtaired by equating the acting moment components #, , M, and Q ,
as given by Equations (50) through (52), to the corresponding restoring
moment components, as given by Equation (18) through (20) of the blade
elastic behavior analysis. In the latter equatmns, the steady terms are
dropped (namely,-7e, in#, and -7(#; -e, )£'in Q ). With 8§/, 8§, 2/ and
d; as defined in Equanon (40),7 = P

8= (£8,-e, £1,) 4’
and

A= GJ+ A é +8a+(E8,-2e,E8,+e ET, )"V ,

the oscillatory restoring moment components may be written

M, =£1, (68" 2] ¢')
M= £I,8, -(EI, a'+8) ¢’
Q=A¢'- 88/

{45, %)
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where

- A £8 ’
Cz 6T+ A gA‘ *!'(EB'— EI: 55) (/5 >

It can be seen that when the expressions for M, , M,, and Q given in
Equations (50) and (51) are substituted into the above equations, three
second-order simultaneous linear differential equations for §,, §, and
¢ are obtained in which some of the coefficients vary with s %

In the expressions for M,, ¥, , and @ given in Equations (50)
through (52), the terms containing 8, ,6; , § , 8, or ¢ as a factor
account for the effects of the variations of the acting moment components
along the bay due to the variations of the deformations along the bay.
Thus, by keeping the bay lengths short, the variations of §, , 8 . 8,.8,
or # within each bay may be assumed to be linear in the evaluation of
M, . M, and Q along the bay. By using

8‘;’ = 7{_(6(01)_ 6(".1-))’ 5 - a(a.e.)__ 8, s

CV9

1Y

avg 3

5., = }{(a')‘""- (5')“""}, 5= (802 8" s
and

1 @e) e ©e) /
61,27 (377 94), 4= 4°7-

avq s

the expressions for M, , M, and Q in Equations (50) through (52)
become

X
n

2
[ SA TA,S tA,s

S

- 2
D, + D,s - Dys

1

Q=A,+ A,s-2,s*

" Since each elastic bay is considered to be untwisted, it follows
{(within each bay) that

(6,/: 5;-07‘ ¢l) = f(ép&z. or ¢) = -j‘;—(&,, 52) or ¢)
and
2
2

" / 2
(8, om 5{): f—(@ ord,) = 2%" (8, or 5,) -
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where, with all P'sand Q's understood to be PP sand Qs
coefficients are

Q¢+ ,3 mn (5 ) "(65" Ez p;) ¢(oc\)

p
"

:.I
.
"
-~

™
n

Qb . P;a:o.f.)_ 6z( )(097 (Q _ E z) ¢(¢.¢-)

9+ Qt 8"¢vy -<Q0~- E1 Px) ¢I

2 b 3 X T2,, avy
A
D3 - Pn. ¢avg

e.e)

+0 (6 )<oe) ~ (82/) . (E,é +£zé >¢(v.t.)

a

< B )R IO~ +B5!-8 6

-+~
ayg % T2y b ay a " 2ayg

jod "

“’(E 3 +£ pb)¢¢v’
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Conscequently, the desired differential equations are

i1, +A5+A3s)

mj
N

82':(61.' - -43——)¢’. fI (D +D S ”'DJS)

y
, ]
\ S

P4
P =

\’,—st-lssz -5 (3',3:5..3353)}%

L £7,
Then, by subsequent integrations and use of boundary conditions at
r=r® or s = 0,it follows that

, 1 \oe) 0.
5'=(5‘ e dzl(¢-¢( e))—z%(Ay"'E’—Azs"'}LAJ‘S’)

0 AINCES) ’ ce.
8,8, -(5,"s -, ([pas-8“

s i 2
* 7EL (.4,-3—Azs o A,s?)
. , e / 8 (o0
6, =8,V e &+ ) (2 $°°)

- S L - L 2
£I2 (D,*zﬂzs 3D3$)

(oe) ANCES] ’ B (0.e)
8,2 6.~ (8, -/ g5-) ([0 s - 8°7s)
s 7 - 7 2
s el A R )
2
3 - ¢(°”- {,114- %42--3—,13+ E? /.D,+ D,s-:;-D_,s’)}—é—

[pus = ¢“’"s—{). $A,-% @: *$0s- )}‘zéz
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After eliminating (f¢ds - °“ s ) in the second and fourth of these six
equations by the use of the sixth, the {irst five yield the following five

equations for the derivatives of the deformations averaged from s =0
tos =4 :

MR T Ly 42
6”5 —a.z;zivyf-EI (A’?-z 2 5 A_,)
Y710 4 L2
Oy (5;) 7 (A F A A

Yoo e B Ly _£25)
524\,,‘ (c‘r ' 51,)25,,* £T, (31" 7 P75

62:\? =(5; )(0?3_ é[,'*_ ) i (/l _3{_ 2 .]3)
_{“ 2re 2 )} (0, 45,-45,)
¢a,v] = {"1*2‘/22-‘%—/{“?% (>, + '[.D --__;) )}‘é‘

When the expressions for Ay Ay, D3, Dy, A,,and A, are substituted into
the above five equations, they can be wr1tten in the .lorm

7 oY (N
-5 1[4
- 51’”’ F,

Y __J B

[4] 379 4y p=X 73 o (54)
_52' - F,
/

\:¢av_7J LFSJ
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where

- ! 4 3, (ve)
Fi— —EI' {A:*T(e"%’b '>}
(ee) A (ce)
Foe =06 {4 22 47}

; &) 1 V4 (0.8) A 0-)
F*:-(é'z) +(d'+g%) E-a—|}1+‘§{/’(5) - 2(8, H

1ol 2D} e {nrh (504 )

1 8 2 (o) /e 5 L, (o€
Fs=--a-|:»{,+ FT, {5 -Z—(P*P¢ )} i{P( ) =R/ }:I
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By substituting the expressions for 4,, D, and A, in the expressions for
the F,’s , the latter expressions may be written

f& N .e)
Q¢
6/
/ F'\ 1
5,
£
2 .14
F — .
,ZJ 3 >—.[CJ<Qb 3
Fy (55)
52'
F
./ 5,
Qx
? )

where [CJ is a 5-x-0 matrix with the following elements:

S A

Cu = 2E1,

£

6’2: - E__Z-,
Cry= 0
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TR

UHF

2 2C |£€I, *a
Caf = CJZ = 0
Cps = E% ax
Cp =0
Cos = 25122
Coe = = 55‘2
Cyp= O
Cag = - géz ’D:'
Csy =0
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£I,/ Z¢
; Bly', 8 L2 > L3 5
%10 = {’* C(dl " EI, }25_1 (Qa*?’% —Er%)

[}
2

"
s
u’b
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- _L 8 ~ i o\_ A A A
cs,m"'c{gz (Qa,fz'g 51’%)*'57@.*52'01,}

The following matrix equation is obtained by combining Equations (54)
and (55):

(Pa, ~ (o.e.)
Q,
(o) 511
-5, 1
vy d,
-8/ 4
avy » Pb
v =lel Ledigr (56
b
i 3‘4'/ 8,
-’ z
o) ¢
at
L¢ /
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Let[d] denote the 5-x-10 matrix obtained by the product

[«¢] =[] [€] .

Then the relations

(6= (6~ 8!

6(t.e) - 5(o.e)__ 6, y

avg

¢(¢‘.e )

/
? v - ¢avgl

lead to the following expressions for the nonzero elements in the 3rd,
4th, 7th, 8th, and 10th rows of the elastic matrix:

E.?h:dfh (h=1,2, and # 5, ... 10)
533 i “du
Epp = %o th=12,3 and 5,6, ... 10
E = l+rdy,
£, = “’3}; (h=1,2,...6,and 89,10
5?7: Md!?
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E. .~ d (h=1,2,7 and 9, 70)

8h ¥4
Egg = 1+ % yg
.Ew'h= <5, h=1,2,...9
£1070= ds,lo ‘

The explicit form of the elastic matrix [E] is indicated below:

[e]=

K

V4 1
2, 4y, lrdy 2y dys  dyg gy Z1q %y s
dy 4y Ay frdyy dyg iy Ay 224 %y s

1

L !
dyy Ay Ay 4yy dys  dy  Ardy;  dy sy Zogo
2y Ay Ay 2y dys Ay Zyy tedyy  dyy gy

1

4 Ay dy gy Los  Zsy 2y Zss dsg 145
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MASS MATRIX

The 13 by 13 mass matrix,[F], relates the column matrices
for positions just inboard and just outboard of an assumed concentrated

mass, such that
( ) (out.)

The column matrix {A} is the same one discussed previously which has
the matrix elements shown on Figure 6 .

Expressions for the elements in the [F] matrix can be derived
{from the expressions for Par Por Far Fy and ¢, which are given by Equations
(41) through (45) in the section on blade inertia loading. @ When Equa-
tions (41) through (45) are used for this purpose, the mass 7 appearing in
them is considered to be the total mass of a segment of the blade rather
than the mass per unit length, These equations are for the combmed
osc111atory and nonosc1llatory loadings; but recognizing that p,= 7 - £,

p‘ p , etc,, it is easy to separate the oscillatory parts of the

equatxons. Steady components of the inertia loadings which remain in
the coefficients of the oscillatory variables can be expressed in terms of
basic mass parameters by using Equation (46). y

Also,for sinusoidal oscillations at frequency «w, the second
time derivatives of the oscillatory variables can be replaced as follows,

§ =-w%$§ =—w'(8,+ Ez¢,\

1t 1t

gzt —w’(éz - £, b) (see page 47)

(55’/5;"/5.1-7’ or /é;o)=_“)z(¢:/3ﬁ' 8y, or Bo)

When Equations (41) through (45) have been modified as dis-
cussed above, the elements of the [F] matrix are

n
n
~
s
It
i

:2"")/3)

“w

2
mw’ e 0 S/nzlb"

E3
= = ~m cos Esn 5
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Fro = "7 (w*+0’sin*p) + £, Fio "€, Eg

Fonn = 7 " {(""}: + G Cp=/5 € pp) €05 8 - 6,4 +/§’)(C” 37p €2 e )}

-mn’r cas/é’

"N
1}

112 ot { (r-r,) 5/n/d— €rp (95 cos/zf— 9A sm/é’)- ) (ez N, )}

2
tmOr, sm/f

m
n

13 mw’{(r-r/, ,)(95 sinf+ 6, cos/f) e, t r]c}
- 7’(-0-2 {ep cos 8- (6£+/J:_)(r—rp) sm/f

"'(e,*‘q‘) cos @ -e, sin 2/6}

Fz* = "7’7.(7. »
Fato= "N r+E,F,
Fsp = Frg = =70 sinf8 cos B

= m (u)zrn.zcosx/.f"
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_ - 2
Feo—mN Y sinfeosf+ EyFyy= E Fy

Fsiu= ”?a)z{(r—rF +6,C, —/A:, e,,) 5/0/54-(64 Ué))(c,, cos/d+e,)}
-mlrsmp
FS.” = W@‘{(r-rp) cosf +e,, (95 sinf+ 6, cas/g)_eé_e7]>
-?ﬂﬂzr’D cos S
Fon = -mw? {(r—r,,)(es cos f- 6, sinf) + e,}
-’ {ep sind+ (6, */f;.)(r- 7, ) cos /8

+ (e, +1n,)smn 28 + e, cos .2/6}

- - - ‘
Fog = Fap = LT
Fem == E, Fy
F”‘: "’7402(324-75)-"2.(12 {(ez,-qc)Cos.?'/f-efsan/é

—(6£+/2F) r sm/3+(ep-rp 6A—r‘p/§p)cos/l}




F98 = -m a)'e1- w0’ {(¢z+ 7c)sm 2/!+ e, cos 28
+(9£+/5;)”os/g “(ep-r.6," D/Ap)sm/f}
2 A
leo = ma’ (¥ +7Ce2)-' mn* {(cp-r‘p GA-r‘p/Jp) Ne cos/

£

F

”3

+6€:— i,’) cos 28+ 1, (e,cos 28-e, sim '2/3)}

tE,Fyy E Fyy
9 " maw’ {(r—r‘F+9£ Cp _/f;:e.vp) Cy
6,4 )k cpc))
- mn’rc,

2= —mw‘{(r-rp*eppq‘)cy
-6, (k + ey cj)}
+ mﬂ‘rj C;r
= mw‘{(r-rp)(QA Cy* 6 C,)+K}

-mn? {K,—K,s«c,,cy -(6[+/3\,)(r-rp) C,} .
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The reason for £, =/ being the only nonzero element in the 3rd, 4th,
7th, 8th, and 10th to 13th rows is that 8/, 8, , 8;, 8,, ¢ , 4.,4,, and
A, do not change across a concentrated mass.

The explicit form of the [F:] matrix is indicated below:

[ ]-

K Fu 2 e Fw o Fm |
1 Fin Fo
!
H
Fsu ! £ s8 Fs,ro Fs,u Fs,lz F.’s,!.!
! Feo Fero
1
1
Fﬂ f 18 ! Fz/a Fo'n FO,I: F;IJ
1
1
1
1
70




METHOD OF SOLUTION

f m(l--f,) m(l')
7 /
ET“" ET®: {4 gr% ET“"

_————’
! T0 TIP
[}
/ o/

Figure 7. ANALYTICAL REPRESENTATION OF BLADE.

When the blade bays are designated as in the above sketch,
the complete matrix equation of the blade is

{A}:.mt)z (I—:‘C [E](l)‘. [P]([) [E]((.)o [F](z) {A}(t/p) . (58)

Inasmuch as

(tip) _ altip) _ pltp) _ Altip) _ AGp)
P = Q[P B = W = Q8P - 0

t

in the {A} ? column matrix, only the 3rd, 4th, 7th, 8th,

10th, 11th, 12th, and 13th columns of matrix [F]”are carried, Thus
[E]”is multiplied into the 13-x-8 matrix that has replaced [F]". This
gives another 13-x-8 matrix into which [R]"is multiplied. The process
is continued until the last inboard matrix is reached. As a result, 13
equations are obtained relating the variables at the blade root and the
blade tip. The last three equations merely state that 4., 4,,and 4,
do not change from the tip to the root and need not be retained. The
remaining equations can be written in the following matrix form where
the [x] matrix is identical to the first 10 rows of the product matrix in
Equation (58).
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7 (root)
5 )

q: (6,’ \ (tip)

5, 5,

3, S,

A 6,

< o, > = [OC ] ¢ ; > ([«] is a 10-x-8 matriy)

% p

S Ao

@y

&,
) (59)

In addition to the five boundary conditions which apply in all cases,
namely,

(51/)(Mt) - 8

(root) 7 \(root) (root) root)
(8] s T L 40

2 =0,

there are three other conditions obtainable by considering the possible
constraints at the flapping, lead-lag and-pitching hinges of the blade,
Take the pitching hinge as an exumple. If £, is the spring constant
(in inch-pounds per radian) of the pitch control mechanism, then

(root’) (roer)
;éP /6/’ = (Qz' ces QE-Q} Sim 65) cos 8,

. Q;W) sin 6,
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or, using Q = Q‘ cos g +Q, sing and Q}= q, cos/A’—Qz .sm/d,

(root (root ) (root)
2,0,= (cos S 7o )sm 8, sinp  sin6 cosb,) Q:“

(roet) Gt
+(sm/6(m”sm€4 ~ cosf T sin 6, cosGA) Q, )

(reot)
+ (cos 6, cos 6,) Q,

where

(rost) 1\{tip)
Q, s, (&)t L @y By

(roet) 1 \(¢p)
q, say (8 v ay fy

(root)
4

%) .

(
I's
Q = a,,(s,) ce st X fp

Similar equations can be written for the constraints at the flapping and
lead-lag hinges. Thus, eight simultaneous linear homogeneous equa-
tions in the eight unknowns,(&,’)""’, «es 4, , and 8, , can be obtained from
matrix Equation (59), The determinant of these equations is plotted
versus various trial values of w for given rotor angular velocity, 2,
and nonoscillatory flapping, lead-lag, and pitching angles ( /3/:' /“, »andg)),
The zeros of this curve are the solutions to the vibration problem for
the given (1, /fF ) ,J; yand 4, . The simplest case is the one with all
three hinges rigidly locked, so that 4. =4, = 6,=0 and the determinant

is simply

Xy, Xs2 7 Xy Fss

|

|
Xy :

]

]
%74 '

]

]

]
X g !

]

]

]
xlot ----------------------------- 6(’05

This is the case considered in Reference 2 .
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EXPERIMENTAL APPARATUS

GENERAL DESCRIPTION

The purpose of the experimental apparatus is to apply a
controlled vibratory force of up to 6 pounds (12 pounds peak to peak)
to each blade of a two-bladed rotor system while operating in a
vacuum at rotational speeds up to 1900 rpm. The equipment which has
been developed has the following capabilities. The vibratory force can
be applied to the blades so that either the symmetric or antisymmetric
degrees of freedom of the rotor can be excited. The radius at which this
force is applied is adjustable with a maximum of 46 inches. A unique
feature of this equipment is that the angular orientation of the line of
action of the vibratory force relative to the plane of rotation of the blades
is adjustable, It can be varied from lying in the plane of rotation to lying
normal to the plane of rotation. This feature enables excitation of either
the chordwise or the flapwise degrees of freedom and also allows the
input generalized force in a specific degree of freedom to be maximized
by aligning the applied force with the motion of the blade at the point of
application. The vibratory force is measured at the attachment point of
the shaker system to the blades with a specially designed force coupling.

The test apparatus is composed of two major assemblies as
installed in the 10-foot-diameter vacuum tank (Figure 8 ). The lower
assembly consists of the test rotor, the slipring assembly, the hydraulic
drive motor, and the base supporting structure. The upper assembly
consists of the rotating shaker system, a 50-pound electromagnetic
vibrator and the overhead supporting structure. These two assemblies
are joined at their common center of rotation by a flexible drive coupling.
This coupling not only transmits the driving torque to the upper system
but also fixes the azimuthal alignment of the rotating shaker system rela-
tive to the test rotor. The two assemnblies are held erect and in axial
alignment by a set of four cables and turnbuckles., The hydraulic motor,
slipring assembly, and electromagnetic vibrator are in sealed enclosures
to allow forced-air cooling while the system is operating in a vacuum.,
The driving power was supplied by a 7-1/2-hp electric motor and
hydraulic pump mounted outside the vacuum tank,

Four energy-absorbing safety barriers fabricated of wood and
metal were installcd so as to surround the plane of rotation of the blades
and the shaker system. An emergency shutdown device was provided
which monitored the vibration level of the supporting structure of the
lower assembly, If the vibrations exceeded a preset level, the device
would bring the rotating system to a stop by shutting cff the hydraulic
pump and introducing resistance into the hydraulic circuit,

THE ROTOR HUB AND BLADES

An existing rotor hub was used which was designed and
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Figure 8, ROTOR TEST APPARATUS INSTALLATION IN VACUUM CHAMBER.
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fabricated under the sponsorship of the Air Force Aeronautical Systems
Division for use in wind-tunnel tests (Reference 1), The hub can be seen
in Figures 8 and 9. The flapping axis for each blade passes through the
axis of rotation and normal to it, The lag hinges are parallel to the axis
of rotation and offset 5 inches from it. Two steel flexure straps (3.6
inches in length) conncct each blade to its lag hinge and provide a pitch
degree of freedom., A fixture was fabricated to interlock the two _s1des
of the hub and enable it to be converted to the teetering configuration
when desired.

The test blades are uniform beams. They were fabricated as
solid aluminum bars with 0, 5-x-3, 0-inch rectangular cross section, and
when installed on the rotor hub they have a tip radius of 44. 75 inches,
They were mounted so that the effective pitch axis of the rotor hub coin-
cided with the mid-chord of the beams, This placed the blade c.g. on
the pitch axis and eliminated the pitch-flap mass coupling. The blade
properties for the uniform section outboard of the retention pins are:

Weight

Flapwise EI
Chordwise EI
Torsional inertia
Torsional GJ

0. 1545 lbs. /in.
0.3125 x 10° 1b, -in. 2
0.1125 x 102 1b. -in, 2
0. 1155 b, ~in, &

0.436 x 10° 1b. -in, 2 '

Inboard from the retention pins to the lag hinge,the elastic properties of
the pitch flexure straps are:

Flapwise EI 0.1795 x 10° 1b, in, &
Chordwise EI 0.529 x 10° b, -in, 2
5 2

Torsional GJ 0.135x 107 1b, ~in,

The flapping inertia of rotor hub per blade is 159 1b, -in.,z and it is
considered infinitely stiff relative to the blades.

THE LOWER DRIVE ASSEMBLY

The structure of the lower assembly consists of two large
welded box-like enclosures bolted together with their connections sealed
using "0" rings and rubber gaskets., The base section encloses the
hydraulic motor and has removable access side panels with bulkhead
fittings for the hydraulic lines, the air lines, and the instrumentation
leads. The top section encloses the slipring assembly. A flexible
coupling connects the hydraulic motor to the rotor shaft. A variable
reluctance pickup was installed in the lower enclosure section to detect
shaft revolutions. Inside the top section of the enclosure, a 44-conductor
slipring was mounted on the shaft. Above the slipring assembly, the
shaft was hollow with outlets on either side of the top bearing and seals.
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Bulkhead plugs installed on these outlets allowed the instrumentation
leads on the rotating side of the sliprings to be passed out of the sealed
enclosure through the hollow shaft to a circuiar ferminal board below the
test rotor hub, The upper end of the rotor shaft is splined to accept the
test rotor hub., This splined section of the shaft is also threaded to
permit vertical adjustment of the hub position on the shaft by means of
threaded collars on either side of the hub.

THE ROTATING SHAKER SYSTEM AND UPPER ASSEMBLY

The shaker system and upper assembly are suspended over- .
head on the center line of rotation of the rotor system by a truss
structure., The bearing assembly for the rotating shaker system and
vibrator mounting are attached to the truss by four threaded rods which
allow adjustment of the vertical position of the shaker system and angular
adjustment of its axis of rotation., The vibrator is mounted above the
bearing assembly and is sealed in an enclosure. The cooling air and
electrical lines for the vibrator pass through the enclosure via bulkhead
plugs and fittings,

The shaker system consists of a rotating hub and two diamet-
rically opposed torque tubes which oscillate about their longitudinal axes
(i. e., pitching oscillation). The pitch oscillation of the torque tubes is
driven by the vibrator through a series of push rods, rocker arms and an
inboard pitch arm on each torque tube. Each torque tube is connected to
a blade through an outboard pitch arm, force rod (push rod), and force
coupling, Backlash and friction are minimized by the use of flexures
throughout the entire oscillating shaker system except for a bearing at
the connection between the rotating and nonrotating sides of the system,

The advantage of this shaking system is the capability of
changing the angular orientation of the shaking force relative to the plane
of rotation. The line of action of the shaking force can be varied from
normal to the plane of rotation (as when forcing the blade flapwise modes)
to parallel to the plane of rotation (as when forcing the chordwise modes),
This is accomplished by changing the angular orientation (in pitch) of the
outboard pitch arms and force rods relative to the torque tube. The
radial location of the shaking force can also be changed by changing the
radial location of these outboard pitch arms,

The installed torque tube hub can be seen in Figure 9, This
hub rotates in and is carried by the bearing assembly below the vibrator.
A push rod from the vibrator (which is in the nonrotating system) extends
down through the hollow shaft of the hub to a rotating bearing fiexure
assembly, The bearing of this small assembly is the connection between
the rotating and nonrotating sides of the shaker system. Short links
connect this bearing assembly to each of the rocker arms (Figure 10)
which are mounted on the top surface of the hub, For symmetric shaking
of the blades, a single rocker arm is used for each torque tube, Anti-
symmetric shaking is obtained by replacing one of the single rocker arms
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Figure 10. ASSEMBLY OF SINGLE ROCKER ARMS WITH BEARING FLEXURE.

Figure 11. DOUBLE ROCKER ARM ASSEMBLY.
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with a double rocker arm assembly (Figure 11); this reverses the motion
of one torque tube. A push rod and inner pitch arm connect each torque
tube to the rocker arms, as shown in Figure 12,

Each of the hollow torque tubes is cantilevered from the hub
by two pairs of pitch bearings which react the transverse loads on the
torque tubes. The two torque tubes are interconnected by a tension
strap inside the hub. The axial (centrifugal) loads of the torque tubes
are thus reacted against each other through this tension strap.

The outboard pitch arm and force rod are shown in Figure 13,
The pitch arm is clamped to the torque tube to facilitate both radial and
angular adjustments. The force rod is connected to the outboard pitch
arm by a flat flexure designed to carry the centrifugal shear load of the
force rod. The force coupling which transmits and measures the shaking
force is assembled at the lower end of the force rod.

This force coupling accommodates the relative angular motions
of the blade with respect to the force rod without significantly influencing
the oscillating shaking force it transmits and measures. The complete
assembly and an exploded view of its components are presented in Figure
14, The shaking force is transmitted through a pair of force wires pre-
luaded by a pair of small beams strain gaged to measure the oscillating
force, The centrifugal load of the coupling is reacted by the blade
through a tension link. A small aluminum fixture clamped to the blade
provides an adjustable attachment point for the force wires and tension
link. At the attachment point this coupling adds 0. 45 oz. of mass to the
blade, and at this radial location it adds 0. 82 oz. of tension per g of
centrifugal acceleration, These small additional loads are included in
the analysis, and their effects on the predicted results are found to be
small for the test blades of this investigation,
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M FORCE ROD| - :f

TENSION LINK'

N 8) INSTALLED VIEW

b) EXPLODED VIEW
Figure 14, FORCE COUPLING.
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INSTRUMENTATION

The test blade was instrumented to determine the spanwise
distribution of moments in the flapwise, chordwise, and torsional
bending modes by measuring the moments at five radial stations. These
were, nominally,s/& = 0,26, 0,40, 0.55, 0.70, and 0.85. As a check on
the relative phase and amplitude of the response of the two blades, the
moments were measured at r/R= 0, 26 on the second blade. The moments
were measured using C,E, C, carrier-system "D" and strain-gage
bridges with four active arms.

The flap and lag angles of the test blade were measured with
calibrated strain-gage beams bridging their respective hinges; a strain-
gage bridge installed on the pitch flexure straps was calibrated to
measure the blade pitch angle. The shaking force transmitted to each
blade was measured with a calibrated four-active-arm, strain-gage
bridge installed on the force beams of each force coupling. The rotor
shaft speed was determined from a once-per-revolution pulse generated
by a variable reluctance pickup and steel pin protruding from the shaft.
The oscillating input voltage to the electromagnetic vibrator was recorded
as an indication of the total force input to the shaker system and the
shaking frequency,

The available slipring assembly limited the rotating instru-
mentation to 20 channels, Twenty C,E, C, system "D" carrier
amplifiers and two power supplies were used. Four power rings on the
slipring assembly allowed the instrumentation to be commonly powered in
two groups by the two power supplies. The data were recorded on two
6-inch (C. E, C. tvpe 5-114) oscillographs which were slaved together,
An internally gene. 2ad correlation trace was recorded on each, and an
accurate timing rel.:rence was supplied by recording a 60-Hz signal on
each oscillograph.

In addition to the data instrumentation, nine channels of strain-
gage instrumentation were required for monitoring the steady and oscil-
lating stresses in the rotating shaker system during these initial tests.
The requirement to monitor the nine channels of stresses in the shaker
system left only eleven channels for data. The eleven data signals
recorded simultaneously were the three blade root angles, the two
shaking forces, five of the test blade moments,and one moment from the
second blade, The six moments chosen to be recorded simultaneously
were either the flapwise, chordwise, or torsional moments, depending on
the mode being excited. The switching of signals to be recorded was
facilitated by miniature plug-connectors installed in the rotating system,
The wiring harnesses, terminal strips, jumpers, plug-connectors, etc.,
in the rotating system were arranged to provide a flexible data selection-
capability, e.g., the nine channels which were used to monitor stresses
during these tests could be transferred to record additional blade-moment
signals by changing plug connections.
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The 50-pound electromagnetic vibrator was driven by a
variable oscillator and power supply. A {requency counter monitoring
the oscillator y ~ovided the operator with an indication of the shaking
frequency, T} . operator monitored the shaking force tc the test blade
and its response (the moments at one station) on the x and 4 axes of an
oscilloscope. The rotational speed of the system was read on a
frequency meter.
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EXPERIMENTAL PROGRAM

The objective of the experimental phase of this program was
to develop an apparatus and a testing technique for determining the natural
vibration modes and frequencies of two-bladed model rotors in the
absence of aerodynamic loads. The initial test program which is
described herein was designed to determine the adequacy of the apparatus
and testing technique, Thus the classical configuration of uniform blades,
for which the natural vibration modes and frequencies can be computed
accurately, was chosen for this investigation,

The tests were conducted in a vacuum tank with the air density
(and thus the aerodynamic loads) reduced to about 1.5 percent of that at
sea level; this is equivalent to an altitude of approximately 100, 000 feet.
The blade vibratory modes were explored at rotor speeds of 300, 600,
900 and 1200 revolutions per minute,

It is noted that the natural vibration modes of a two-bladed
teetering rotor include all the modes of a two-bladed rotor with individual
blade flapping and zero flap-hinge offset. This assumes that the blades
and hub are the same for the two systems and that the rotor shaft imped-
ance as seen by the rotor is infinite. The rotor hub used for these tests
is the same in either configuration. It is converted to the teetering con-
figuration by locking together, at the flap hinge, the flapping motion of
the two blades. Therefore, the natural vibration modes and frequencies
were explored in the teetering configuration. The following six elastic
natural vibration modes were investigated:

1. First antisymmetric pin-ended flapwise bending.

2. Second antisymmetric pin-ended flapwise bending.

3. First symmetric cantilever flapwise bending,.

4, Second symmetric cantilever flapwise bending,

5. First antisymmetric pin-ended chordwise bending,

6. Second cantilever torsion.
The second torsional mode was investigated instead of the first because
the pitch flexure straps at the blade root were torsionally so soft rela-
tive to the blade that the first cantilever torsional mode is essentially a
rigid body pitch response with virtually no torsional deformation of the
blade,

Each mode was investigated by bringing the rotor up to the

desired rotational speed and then applying the appropriate vibratory
shaking force to the blades (as measured by the force couplings) at a
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sequence ot closely spaced discrete frequencies over a frequency range
bracketing the natural frequency. An oscillograph recording of the
structural moments and shaking force was obtained at each shaking
trequency., The shaking force and the structural moments, at one span-
wise stetion on the blade, were monitored on the ¥ and y axes of an
vscilloscope, This facilitated control of the force and response
amphitudes, It also helped to nominally locate the natural frequencies
by observation of the changing Lissajous pattern due to the phase shift of
the blade response relative to the applied force as the shaking frequency
passed through the natural frequency. The natural frequencies are
determined by the minimums in the shaking force per unit amplitude of
response as a function of shaking frequency,
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THEORETICAL COMPUTATIONS

As discussed in the preceding sections, the experimental
investigation of the natural frequencies and mode shapes was limited,
in this particular program, to a rotor system with uniform blades.
The conditions of blade uniformity were, therefore, introduced into
the general theoretical formulation described in the section titled
"Theoretical Development, ""and the resulting mass and elastic matrices
were obtained for the uniform blade. Two existing computer programs
using the matrix method of solution described in the "Theoretical
Development' section were modified to use these mass and elastic
matrices. The flapwise and chordwise degrees of freedom are analyzed
with one program and the torsion degree of freedom with the other pro-
gram. Both programs are written in FORTRAN IV for use on an IBM
360 computer.

The flapwise-chordwise bending program consists of a main
program and 8 subroutines. It has a storage requirement of 162, 000
bytes. The blade is represented by a series of concentrated masses
separated by massless elastic segments, each of constant stiffness.
The maximum allowable nuinber of blade segments in this program is
100. The rotor hub is represented by its inertias. The program com-
putes the flapwise or the chordwise natural frequencies and mode
shapes; it also has the capability of computing the coupled flapwise-
chordwise modes for a twisted blade. A flow chart of the program logic
is presented in Figure 15.

The segmentation of the blade representation is chosen
to represent the spanwise blade properties adequately, The inputs
are the spanwise mass, elastic, and twist distributions for the mode to
be calculated; the hub inertias; root boundary conditions; rotor rota-
tional speed; and initial trial value of the natural frequency. The
printed output of the program includes all the inputs in addition to the
computed shear, bending moment, slope, and deflection at the spanwise
position of each concentrated mass.

The computational scheme used in the torsion program is
based on the Holtzer method. The blade is represented by a series of
concentrated inertias separated by inertialess elastic segments, A
flow chart of the program is presented in Figure 16,
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-SYBROUTINE INPUT:

READS (X THE INPUTS & “RITES THEM ON THE OUTPUT. SETS CONTROL
CONSTANTS FOR APPROFRIATE ROOT BOUNDARY CONDITIONS.

4

COMPUTE THE ELEMENTS OF THE ROTATION MATRICES.

YES

COMPUTE CEMTRIFUGAL TENSION
DISTRIBUTION IN BLADE

COMPUTE THE ELEMENTS OF THE
OUTER ELASTIC MATRICES
(£ LAPWISE & CHORDWISE)

|

COMPUTE THE ELEMENTS OF THE
SIMPLIFIED OUTER ELASTIC

MATRICES (FLAPWISE & CHORDWISE)

N

NO

BLAD

|

COMPUTE THE ELEMENTS OF THE
INNER ELASTIC MATRICES
{FLAPWISE & CHORDWISE)

IEST
TWISTED

3

YES

DS

COMPUTE THE ELEMENTS OF THE
SIMPLIFIED INNER ELASTIC
MATRICES (FLAPWISE & CHORDWISE)

Figure 15, FLOW DIAGRAM FOR THE FLAPWISE~CHORDWISE
BENDING VIBRATION COMPUTER PROGRAM.
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COMPUTE THE ELEMENTS OF THE MASS MATRICES
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SUBROUTINE EREM:

EVALUATES THE COLLAPSED MATRIX RELATING THE ROOT & TIP BOUNDARY
CONDITIONS BY MULTIPLYING TOGETHER ALL THE MASS, ELASTIC, AND
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SUBROUTINE EVDET:

EVALUATES DET;= DETERMINANT OF THE COLLAPSED MATRIX FOR w; FOR THE
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Figure 15, (Cont'd) : é
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SUBROUTINE SLTP:

EVALUATES THE FLAPWISE AND CHORDWISE SLOPES & DEFLECTIONS AT THE
TIP FROM THE ROOT BOUNDARY CONDITIONS AND THE COLLAPSED MATRIX

SUBROUTINE CBMOD:

COMPUTES THE FLAPWISE AND CHORDOWISE SHEAR, MOMENY, SLOPE, AND
DEFLECTION AT THE OUTBOARD SIDE OF EACH MASS ELEMENT

SUBROUTINE OUTPUT:
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0 NO
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Figure 15, (Cont'd)
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T
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ITERATION
COMVERGED

I
1

NO CONVERGENCE

WRITE OYY THE INPUTS
AND RESULTS

Figure 16, FLOW DIAGRAM FOR THE TORSIONAL BENDING VIBRATION PROGRAM.
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DISCUSSION OF TEST RESULTS AND
COMPARISON WITH COMPUTED RESULTS

The natural {requencies, mode shapes, and corresponding
shear and moment distributions were computed tor each of the six blade
modes corresponding to those of the two-bladed rotor system which was
investigated experimentally, Comparisons of the distributions of the
measured and computed spanwise moments and the natural frequencies
tor each of these modes are presented in Figures 172 through 17f. The
comparisons are made at rotational speeds of 300 and 600 rpm for all
modes and, in addition, at 900 rpm for the first symmetric cantilever
flapwise bending mode, The spanwise moment distributions and natural
frequencies computed for the nonrotating cases are also presented for
reference, although they were not determined experimentally,

The computed spanwise moment distribution for each mode is
plotted on a graph as a continuous curve, and the measured moments are
plotted at each of the five instrumented stations, The amplitudes of the
moment traces were read at three different times within each oscillo-
graph recording (obtained at the experimentally determined natural
frequency), and the resulting three sets of moment data are shown in
the figures, For identification, a different plotting symbol is used to
represent each of these three sets of measured moments, The spread
of the measurements at each spanwise station is an indication of the
overall accuracy of the reduced data,

The computed moment distributions presented are for the mode
shapes normalized to a unit tip deflection-- for the bending modes, one
inch of tip deflection was used; for the torsion mode, one radian of tip
rotation was used. The measured moments, however, were obtained
for tip response amplitudes considerably less than these unit values,
Therefore, to enable comparisons of the distributions of the measured
and computed moments, the measured moment distribution in each mode
was scaled so that the maximum measured moment was made equal to
the computed moment at the same radial station,

In general, the measured moment distributions are considered
to be in satisfactory agreement with the computed distributions, but
there are three exceptions, One exception is the antisymmetric pin-
ended flapwise bending mode at 600 rpm (Figure 17a). The other two
exceptions are the second torsion mode at 300 rpm and at 600 rpm
(Figure 17f).

With vne exception, the differences between the measured and
computed natural frequencies range from 2 to 14 percent, The exception
1s the first antisymmetric pin-ended chordwise bending mode for which
the difference between the computed and measured natural frequency is
about 35 percent,
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Analvses ot the theoretical and experimental results have
indicated that the ditterences can be attributed to both experimental
thaccuracies and himaitations 1n the assumed mathematical model,

As u precaationary measure, the shaking force during these
initial tests was restricted to a rather low level, This factor, together
with the high stittness ot the test blades, resulted in low amplitude
response ot the blade at the tundamental shaking trequency. Consequently,
the signal levels were very low, 1n general, and the instrumentation was
operated at masimum pgain, Internal electronic noise was, therefore,
amplinted as well, Furthermore, excitations extrinsic to the fundamental
~haking torce were apparently being introduced to the system. Sources
ol the extrinsic excitations are such things as the rotating shaker system
itselt, small nusalignmients ot the rotating shaker system with respect
to the test rotor system, the hvdrauhic drive motor, and other mechanical
cquipment operating in the burlding (via the vacuum tank structure), These
estraneous excitations and the very low structural damping of the solid
test blades resulted in signiticant responses at other frequencies in
adidition to the tundamental shaking frequency. These effects superim-
posed g norse’” on the signal corresponding to the response to the
tundurnental shaking torce.  As a result of these factors, the signal-to-
hopse levels on the revords were quite low and became worse with
imreasing rotational speed.

Sample vscillograph records are presented 1in Figure 18.
Both ot these sample records were obtained for the first symmetric
vantiles er tlapwise hending mode being torced very close to its natural
trequency,  One rvcord was taken at a rotational speed of 300 rpm and
the uther at 500 rpns; the notse level and 1ts increase with rotational
speed are vvident,

Without any nlteriy ot the data signals, the low signal.to-
nuise leyvels pesulted in readout errors, particularly in the measurement
ot the natural trequencies,  The measured natural trequency was
deternmuned by the nunimuman the varation with tundamental shaking
trequency vt the shaking torce per unit amphitude of regponse (1. e,, at
the peak responase),  The predise detimition ot this nunimum was
uhi~onrad by the nowse level 1n the data.

Nevertheless, while there are hhntations on the experimental
avvuracy associated with problems such as those discussed above, the
probable errors in the mcasurements are not sutficiently large to
acvount ter the ditterences between the computed and measured results
in general,  The major reason tor the ditterences that have been
abseryed in thi~ investigation s that the analytical representation does
not correspond to the actual physical system that was tested, It was
intended that the model contniguration and conditions designed for these
tiutial tests should be so simple as to be representable by a uniform
seamn having neghpible intermodel coupling, This objective apparently
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Figure 18. SAMPLE 0SCILLOGRAPH RECORD.
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was not achieved, and significant effects were introduced due to coupling
and the simultaneous excitation of several degrees of freedom, For
example, the exceptionally large discrepancy noted previously between
the measured and computed natural frequency for the pin-ended chord-
wise bending mode is due to the fact that the measured resonance was
actually that of a coupled-mode response whereas the analysis assumes
no coupling, Indications are that the measured response in this case
was a coupled mode involving not only pin-ended chordwise bending but
significant amounts of torsion and motion of the rotor shaft and drive
system as well. In addition to this usual type of linear coupling, there
can be a nonlinear coupling, such as a change (and/or periodic variation)
of the generalized mass in the pitch and torsion modes proportional to
the simultaneous response in one of the bending modes. This intermodal
coupling due to multimode forced response can have a significant
influence on the measured resonant frequencies of the system, depending
on the modes and their amplitudes, The simple analytical representation
which was assumed does not account for the response of the rotor on its
shaft and drive system. Ixthe computations for the pin-ended modes, the
blade moments and deflections have been assumed to be zero at the pin;
this is not necessarily true for the test rotor system. For example, the
torsional response of the rotor shaft and drive system will allow an
oscillating displacement of the radially offset lead-lag hinge, Also, the
relatively complex tenrion-torsion straps used in the hub in place of
pitch bearings and a pitch spring apparently introduced coupling in the
system which is not accounted for in the analytical representation,
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CONCLUDING REMARKS

An analysis and computational technique has })een developed
tor predicting the natural vibration modes and frequencies of r_otor
blades which are of a general configuration including the combined
rigid body and elastic motions of the blades. This was prgg‘ramed
for the special case of the uniform blade used in the experimental

phase of this etftort,

An experimental apparatus and a testing technique have been
developed for determining the natural vibration modes and frequencies
of two-bladed rotor systems in all degrees of freedom while operating
in the absence of aerodynamic loads, Initial tests to establish the
capabilities of this experimental apparatus were conducted by measuring
the natural vibration modes and frequencies of a relatively simple two-
bladed rotor system,

The experimental phase of this effort has demonstrated the
capability of the experimental apparatus for applying controllable
oscillating shaking forces in the plane of rotation or normal to the plane
of rotation at the tip of each blade of a two-bladed rotor while rotating
1n a near vacuum, This program has also demonstrated the feasibility
of the experimental technique for the use of this apparatus to determine
the natural vibration modes and frequencies of a two-bladed rotor
system while rotating in a near vacuum,

The tests performed with the system during this initial pro-
gram have indicated that, with some small improvements, sufficiently
accurate measurements of natural vibration modes and frequencies can
be made. Satisfactory measurements have been extracted from the
experimental data even though the signal-to-noise levels were quite low
and no special measures were taken during data processing to minimize
the resultant errors. Some elementary mathematical filtering of the
data might have improved the results substantially,

It appears thal the extrinsic excitations constitute the primary
limitation on the adequacy of the experimental apparatus. The simul-
taneous excitation of the rotor at frequencies other than the fundamental
test frequency and the corresponding response can have a significant
influence on the measured resonant frequencies. The coupling effects
(which can be linear or nonlinear) associated with such simvltaneous
excitalions are normally neglected but could be important depending on
the particular modes and their amplitudes. Some effort must be applied
to reducing the levels of these undesirable shaking forces or to isolating
the rotor system from them.,

A major cause of the differences between the measured and
computed natural frequencies appears to be that the assumed
mathematical model does not correspond to the actual system tested.
Some of the complexities in the test model were introduced as a result
of making use of an available rotor hub, For example, the pitch-tension
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straps used in this hub (in place of a pitch bearing and pitch spring) are
believed to have produced unexpectedly large coupling effects. However,
the model rotor system used in these tests was designed on the basis of
standard procedures in which effects such as those described above and
in the previous section have normally been assumed negligible. Indica-
tions are that these assumptions are not valid for the high-frequency
modes. Consequently, although these initial tests were intended pri-
marily to establish the capability of the experimental system, they have,
in fact, already demonstrated the inadequacy of structural analysis
methods in current use,
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RECOMMENDATIONS

Fhe present ettort has developed an analys:s capable of
aredictne the dynanuac charactenstics of rotor systems of a very
seneral contaareation and has developed, rabricated, and performed
initial tests with the experimental apparatus required to verify the
analyvsis,  While the teasibility ot using the developed apparatus and
teat techuique hes been demonstrated, there is a problem with
extrimsic excitation ot the test rotor which must be attenuated., Also,
because ot the need tor ver:tving the analytical procedure which has

been developed, 1t s reconunended that the test apparatus and techmque

adeveloped in this program be used to obtaxn the validating data,
Spevitically, 1t s recommended that:

l.

v
.

An ctrort should be made to attenuate the spurious
excitation reaching the test rotor by 1solating the
experimental apparatus from the vacuum tank and
trom the hydraulic drive motor,

For anv turther tests, relays sheill be incorporated
on the rotating side of the slipring assembly to switch
trom stress-monitoring signals to data signals, This
would permit simultaneous recording of flapwise,
chordwise, and torsional moments,

The analvucal technique developed for the general
rotor configuration should be programed for digital
computation,

Several model rotor configurations should be designed,
tabricated, and tested to obtain the experimental data

necessary to verity the general analyvtical method that

has been developed,
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